Kapitel 10: Beugung & Interferenz

- Huygenssche Prinzip, Beispiel: Brechung
- Linsenwirkung im Wellenbild
- Beugung (Diffraktion)
- Dispersion
- Interferenz

Huygenssche Prinzip

Licht an Grenzflächen:

Jeder **Punkt** einer **Wellenfront** kann als Ausgangspunkt einer neuen Welle (**Elementar-Welle**), betrachtet werden. Die neue Lage der Wellenfront ergibt sich durch Überlagerung (**Superposition**) sämtlicher Elementarwellen (Enveloppe). (*in 3D sind Elementarwellen kugelförmig, in 2D, kreisförmig*).

<u>applet</u>

http://www.walter-fendt.de/html5/phde/refractionhuygens_de.htm

Linsenwirkung im Wellenbild

Beugung

Beugung

Abb. 10.36. Die Funktion $(\sin x/x)^2$

Beugung am Spalt

Abb. 10.39. Intensitätsverteilung $I(\theta)$ bei der Beugung am Spalt für verschiedene Werte des Verhältnisses b/λ von Spaltbreite *b* zu Wellenlänge λ

Beugung durch Kreisförmige Blende

$$I(\theta) = I_0 \cdot \left(\frac{2J_1(x)}{x}\right)^2$$
$$x = \frac{2\pi R}{\lambda} \cdot \sin \theta$$

J1: Besselfunktion erster Ordnung

Nullstellen bei

....

$$x_1 = 1,22 \pi$$

 $x_2 = 2,16 \pi$

Erste Nullstelle von $I(\theta)$ bei

 $\sin\theta_1 = 0.61 \,\lambda/R$

Abb. 10.41. Ringförmige Beugungsstruktur hinter einer Kreisblende, die mit parallelem Licht beleuchtet wird. Aus M. Cagnet, M. Francon, J. C. Thrierr: *Atlas optischer Erscheinungen* (Springer, Berlin, Göttingen 1962)

Abb. 10.42. Äquivalenz der Beugung des durch eine Blende transmittierten Lichtes und des an einem Spiegel gleicher Breite *b* reflektierten Lichtes

Beugungsgitter (8 Spalten, d/b=2)

Abb. 10.44. Intensitätsverteilung $I(\theta)$ bei einem Beugungsgitter mit acht Spalten, bei dem d/b = 2 ist. In die zweite Interferenzordnung gelangt wegen des Beugungsminimums kein Licht

Beugungsgitter (8 Spalten, d/b=2)

Abb. 10.44. Intensitätsverteilung $I(\theta)$ bei einem Beugungsgitter mit acht Spalten, bei dem d/b = 2 ist. In die zweite

Interferenzordnung gelangt wegen des Beugungsminimums kein Licht

Beugunggitter (8 Spalten, d/b=2)

Abb. 10.44. Intensitätsverteilung $I(\theta)$ bei einem Beugungsgitter mit acht Spalten, bei dem d/b = 2 ist. In die zweite

Interferenzordnung gelangt wegen des Beugungsminimums kein Licht

Beugungsgitter

Incident plane wave

N=1, nur Beugung

N=3, nur Interferenz (Spalten)

Note: Scale 2x that when diffraction included.

N=3, Beugung + Interferenz zwischen Spalten

hyperphysics

Gitter und Dispersion

Gitter und Dispersion

Nominal Distanz zwischen CD "tracks" d=1.6 μm (625 tracks per mm)

Reflexionsgitter

Einfallender und reflektierender Strahl auf verschiedenen Seiten Gitterder Gitternormalen normale $\begin{array}{l} \Delta_1 = d{\cdot}sin\alpha\\ \Delta_2 = d{\cdot}sin\beta\\ \Delta s = \Delta_1 - \Delta_2 \end{array}$ Furchennormale β θ Phasenflächen α d/sin α Δ_1 $\Delta_2 = \mathbf{d} \cdot \mathbf{sin}\beta$ a a)

Reflexionsgitter

Reflexionsgitter: Spektroskopie

Wasserstofflampe

H2 Moleküle durch Wasserstoffmoleküle durch Elektronenstrahl in angeregte H Atome zerlegt. Anregungsenergie wird dann in Form von elektromagnetischer Strahlung abgegeben.

Rayleigh Kriterium

objective numerical aperture: NA

microscopy NA: dimensionless nb

characterizes the luminosity of the objective (= the range of angles over which the objective can accept (or emit) light)

photography: f/#-number or N N=f/D

NA = n·sin(θ) = n·sin [atan(D/2f)] ≈ n·D/2f, (f →∞)

 \Rightarrow NA \approx 1 / (2·N) (in air)

NA and resolution limit

Konstruktion der Fresnelsche Zonen

Abb. 10.48. Zur Konstruktion der Fresnelzonen. Die Figur ist rotationssymmetrisch um die Gerade \overline{LP}

Konstruktion der Fresnelsche Zonen

Abb. 10.48. Zur Konstruktion der Fresnelzonen. Die Figur ist rotationssymmetrisch um die Gerade \overline{LP}

Fresnelsche Zonen

Mit Schirm + Blende:

Mit Schirm:

Fresnelsche Zonen: Radius

Fresnelsche Zonenplatte

Zonenplatte: Anordnung um spezifische Fresnelzonen undurchlässig zu machen e.g. aufdedampfte metal Kreisringe auf Glass

Fresnelsche Linsen

Edmund Scientific

Fresnelsche Linsen

Schiffslaterne

Leuchtturm

Anwendung für X-Ray Mikroskopie

gold zones of a Fresnel zone plate objective

für x-rays, n=1, keine einfache optische Elemente ⇒ Fresnel Zonenplatten

xradia

Anwendung für X-Ray Mikroskopie

Fresnel zone plate made of a single crystal silicon membrane substrate. Line widths down to 30 nm have been achieved.

C. David et al., PSI

Anwendung für X-Ray Mikroskopie

In order to increase the efficiency, the design of conventional, binary zone plates can be changed using a multilevel profile for the grating structures of the zone plate. J. Gobrecht et al., PSI, H.-P. Herzig et al., Uni. Neuchâtel

Interferenz

Michelson Interferometer

Abb. 10.11. Transmission des Michelson-Interferometers als Funktion des Wegunterschiedes $\Delta s/\lambda$ in Einheiten der Wellenlänge λ bei monochromatischer einfallender ebener Welle

Mach-Zehnder Interferometer

Mach-Zehnder Interferometer

z.B: Messung der Brechungsindex von einem

Gas. Druck varieren ($\Rightarrow \Delta n$) und Interferenz Maxima messen.

Mach-Zehnder Interferometer

Laser Spectroscopy: Basic Concepts and Instrumentation, W. Demtröder

Interferenzfilter

Antireflexbeschichtung

 $n_4 > n_3 < n_2 > n_1$

Antireflexbeschichtung

Abb. 10.31. Restreflexion bei einer einfachen Antireflexschicht (Kurve 1) im Vergleich mit unbeschichtetem Glas mit $n_2 = 1,5$. Die Kurve 2 wird durch einen Zweischichten-Breitband-Antireflexbelag erreicht, 3 durch einen Dreischichtenbelag