Photovoltaik (2)

Basic Principles of Photovoltaics Maximum power conversion of photovoltaic devices

Ressources: Peter Würfel, Physik der Solarzellen Jenny Nelson, The Physics of Solar Cells Thomas Dittrich, Material Concepts for Solar cells & lecture notes

Übersicht der Vorlesung

15.09.2015	allg. Einführung in die Solarenergie
22.09.2015	Basic Principles of Photovoltaics
29.09.2015	Electrons and Holes in Semiconductors
6.10.2015	Absorption, Recombination, and Generation
13.10.2015	The ideal semi-infinite pn-junction
20.10.2015	Illuminated pn-junction
27.10.2015	c-Si solar cells
3.11.2015	Basics of thin film solar cells
10.11.2015	Thin film solar cells
17.11.2015	Concepts of nanostructured solar cells
24.11.2015	Dye Sensitized Solar Cells
1.12.2015	Exkursion?
8.12.2015	
15.12.2015	Prüfung

The sun is a hot fire ball

spectrum of the black body radiation (Planck) (energy flux as a function of the photon energy and of the temperature) with h = 6.6 10^{-34} Js c = 3.10⁸ m/s k_B = 1.38 10^{-23} J/K

$$E_{ph} = h \cdot \nu \quad \frac{dJ_S(h\nu)}{d(h\nu)} = \frac{8\pi}{h^3c^2} \cdot \frac{(h\nu)^3}{exp(\frac{h\nu}{k_BT_S}) - 1}$$
$$(h\nu)_{max} = 2.82 \cdot k_BT$$

By measuring the photon energy at the maximum of the sun spectrum T_s can be obtained.

temperature at the surface of the sun:

 $T_s \approx 5800 \text{ K}$

Energy flux spectrum and photon flux

Power of the sun received on earth

Stefan-Boltzmann law

power of the sun

power received on earth

$$P_{S} = \sigma \cdot T^{4} \cdot 4\pi \cdot R_{s}^{2}$$

 $I_{\rm s} = \sigma \cdot T^4$

$$P_e = P_S \cdot \frac{\pi \cdot R_e^2}{4\pi \cdot (AU)^2}$$

with σ = 5.67 10⁻⁸ W/(m²K⁴) R_s = 7 10⁵ km R_e = 6.4 10³ km AU = 1.5 10⁸ km

$P_{e} \approx 1.8 \ 10^{8} \ GW$

more than 1000...10000 times the energy demand of mankind

The solar constant

energy flux of sun light to the earth normalized to the area of 1 $m^{\rm 2}$ Definition of the solar constant (J_s)

$$J_{S} = \frac{P_{S}}{4\pi \cdot (AU)^{2}}$$

 $J_{s} = 1356 \text{ W/m}^{2}$

Insolation - Solar Irradiance

Photovoltaic Solar Electricity Potential in European Countries

https://en.wikipedia.org/wiki/Direct_insolation

- three-year average of solar irradiance, including nights and cloud coverage
- area of black discs allows to achieve 18TW electrical power
- Global average: Extraterrestrial $<J_{E}>=1/4 \cdot 1356 \text{ W/m}^{2}=339 \text{ W/m}^{2}$

CH: 115 W/m² Saudi-Arabien: 285 W/m²

The role of the earth atmosphere

absorption of light by molecules

 $(H_2O, CO_2, O_2, O_3, N_2...)$ heating of atmosphere decrease of the intensity of sun light on ground

light scattering

(particles and molecules) change of the direction of light

Air Mass: AM1.5, AM1.0....

Definition: For convenience AM1.5 is defined as 1000W/m² integrated irradiance

(Typical experimental values at 42° are 900W/m²)

AM0: Extraterrestrial AM1.0: equator

$$n_{AM} = \frac{1}{\sin\left(\gamma_S\right)}$$

$$\gamma_S = 41.8 \Rightarrow n_{AM} = 1.5$$

Alternatively:
$$n_{AM}$$
) $\frac{1}{\cos(\alpha)}$

http://www.volker-quaschning.de/articles/fundamentals1/index.php

Solar spectrum

- Comparison of AM0 (extraterrestial) with black body radistaion of T=5960K and AM 1.5

- Dips in spectrum at 900, 1100, 1400 and 1900nm (H_2O) and at 1800 and 2600nm (CO_2)

Temperature on earth from energy balance

 $I_{atm} \rightarrow 0$

Energy flux from sun to earth

$$I_s = J_s \cdot \pi \cdot R_e^2$$

Black body radiation from earth into free space

$$I_e = \sigma \cdot T_e^4 \cdot 4\pi \cdot R_e^2$$

with σ = 5.67 10⁻⁸ W/(m²K⁴) J_s = 1.35 kW/m²

Balance

$$I_{e} = I_{s}$$

$$\Rightarrow T_{e} = \sqrt[4]{\frac{J_{s} \cdot \pi \cdot R_{e}^{2}}{\sigma \cdot 4\pi \cdot R_{e}^{2}}} \approx 277 K$$

The Albedo effect, diffuse reflection

Albedo (or reflection coefficient) is the percentage of incoming radiation reflected off a surface.

Temperature on earth with max green house effect

Assumption: the black body irradiation of the earth is absorbed completely by GHG (CO_2 , CH_4 ,...) and half of this energy is re-absorbed by earth

Energy balance between earth atmosphere and free space

$$I_s = I_{atm} / 2$$

Energy balance on the earth

$$I_e = I_s + I_{atm} / 2$$

$$\Rightarrow I_e = 2 \cdot I_s$$

$$T_e = \sqrt[4]{2} \cdot 277 K \approx 326 K$$

Conversion of sun light

heating of rocks radiation energy turns directly into entropy

heating of oceans and atmosphere

partial conversion into free energy (wind, hydropower)

photosynthesis

storage of free energy as chemical energy coal, gas, oil (fossil fuel), biomass <1% conversion efficiency

direct conversion into electricity in solar cells lowest amount of entropy production cleanest energy is electricity conversion efficiencies 5...40 %

Bio mass for energy in Germany

photosynthesis $C_6H_{12}O_6, \dots$ converted into methanol, methan...

population density in Germany: 230 persons/km² primary energy consumption: 6 kW/person

efficiency of photosynthesis about 1% further losses in energy due to production of fuel from bio mass,...

demand for energy production: 1.4 MW/km² average solar radiation in Germany: 150 MW/km²

 $\rightarrow\,$ Bio mass can supply only a minor part of energy needed in Germany

The future energy mix

Th. Dittrich, lecture notes

The solar cell

electronic device converting solar power directly into electrical power

A solar cell absorbs light and conducts electrons and holes to separate electron and hole collecting contacts.

A major characteristic is the **energy conversion efficiency** η .

Excitation and charge separation

Photon creates electron-hole pair, which is separated by an asymmetric potential. Charge separation prevents relaxation to its initial state.

Energy balance

In order to reach an equilibrium situation, the photon flux absorbed by the solar cell must equal the emitted photons

⇒ Kirchhoffs law

$$\epsilon(h\nu) = a(h\nu)$$

emissivity = absorbance (absorptivity)

Cell in the dark: Absorption of thermal photons

$$b_a(E) = \frac{2F_a}{h^3 c^2} \left(\frac{E^2}{\exp\frac{E}{k_b T_a} - 1}\right)$$

- b_a: incident photon flux
- h: Planck's constant
- c: speed of light
- k_B: Boltzmann constant
- E: Energy

Thermal photons are absorped from the environment of Temperature T_a

- F_a : geometry factor; $F_a = \pi$ for hemisphere
- a(E): absorbance

The equivalent current density j_{abs} absorbed from the ambient:

$$j_{abs}(E) = q(1 - R(E)) \cdot a(E) \cdot \frac{2F_a}{h^3 c^2} \left(\frac{E^2}{\exp\frac{E}{k_b T_a} - 1}\right)$$

Absorption and spontaneous emission

Cell in the dark: Emission of thermal photons

$$j_{rad}(E) = q(1 - R(E)) \cdot \epsilon(E) \cdot \frac{2F_a}{h^3 c^2} \left(\frac{E^2}{\exp \frac{E}{k_b T_a} - 1}\right)$$
$$= q(1 - R(E)) \cdot \epsilon(E) \cdot b_a(E)$$

In equilibrium: Kirchoff's law $\epsilon(h\nu) = a(h\nu)$

Under illumination (absorption)

$$b_S(E) = \frac{2F_S}{h^3 c^2} \left(\frac{E^2}{\exp \frac{E}{k_b T_S} - 1}\right)$$

T_s: Temperature of the sun F_s= $\pi \sin^2\theta_s = \pi / 4.6 \cdot 10^4$ $\theta_s = 0.26^\circ$

$$j_{abs}(E) = q(1 - R(E)) \cdot a(E) \cdot (b_S(E) + (1 - \frac{F_S}{F_e} \cdot b_a(E)))$$

Under illumination (emission)

Depends on the $\Delta \mu$ (chemical potential). When electrons are at raised energy, relaxation is more frequent: Generalized Planck's radiation law:

 $j_{rad}(E) = q(1 - R(E)) \cdot \epsilon(E) \cdot b_e(E, \Delta \mu)$

Net current density under illumination

Under the assumption that $\epsilon(h\nu) = a(h\nu)$ and $\Delta\mu = const.$ across the cell

$$j_{abs}(E) - j_{rad}(E) = q(1 - R(E)) \cdot a(E) \cdot (b_S(E) + (1 - \frac{F_S}{F_e}) \cdot b_a(E) - b_e(E, \Delta \mu)$$

Net absorption:
$$j_{abs(net)}(E) = q(1 - R(E)) \cdot a(E) \cdot (b_S(E) - \frac{F_S}{F_e} \cdot b_a(E))$$

Net Emission Radiative recombination $j_{rad(net)}(E) = q(1 - R(E)) \cdot a(E) \cdot (b_e(E, \Delta \mu) - b_e(E, 0))$

unavoidable loss!

Photocurrent

$$J_{SC} = q \int_0^\infty \eta_c(E) \cdot (1 - R(E)) \cdot a(E) \cdot (b_S(E) - \frac{F_S}{F_e} \cdot b_a(E)) dE$$
$$\approx q \int_0^\infty \eta_c(E) \cdot (1 - R(E)) \cdot a(E) \cdot b_S(E) dE$$

 η_{C} : probability that electron is collected

cf.
$$J = q \int_0^\infty QE(E) \cdot b_S(E) dE$$

Quantum efficiency: $QE(E) = \eta_c(E)(1 - R(E)) \cdot a(E)$

For non-reflecting material: R(E)=0 and perfect charge separation η_c =1:

$$QE(E) = a(E) = \begin{cases} 1 & E \ge E_g \\ 0 & E < E_g \end{cases}$$

Two band photoconverter

Photons with $E >> E_g$ have the same effect like electrons with $E = E_g$ Photocurrent is rather proportional to photon flux and not photon energy But photons with $E < E_g$ can not create electron hole pairs

Dark current

Assumption:

- only loss process is radiative

relaxation of electrons through spontaneous emission

- No non-radiative losses due to scattering at defects in the material

$$J_{dark} = q \int_0^\infty (1 - R(E)) \cdot a(E) \cdot (b_e(E, \Delta \mu) - b_e(E, 0)) dE$$

where $\Delta \mu = q V$

Dark current is related to emitted flux, which is increased with increasing voltage

Net cell current density

$$J(V) = J_{SC} - J_{dark} = q \int_0^\infty (1 - R(E)) \cdot a(E) \cdot (b_S(E) - (b_e(E, \Delta \mu) - b_e(E, 0))) dE$$

incoming flux emitted flux

For step-like absorption ($E>E_g$):

$$J(V) = J_{SC} - J_{dark} = q \int_{E_g}^{\infty} b_S(E) - (b_e(E, \Delta \mu) - b_e(E, 0)) dE$$

J(V) depends strongly on voltage:

$$J(V) = J_{SC} - J_0(\exp\frac{qV}{k_BT} - 1)$$

at V=V $_{\rm oc}$ the total emitted flux balances the absorbed flux

Limiting efficiency

Incident power:
$$P_S = \int_0^\infty E_S(E) dE$$

Output power density: $P = V \cdot J(V)$ (assumption no Ohm's losses)

Power conversion efficiency: $\eta = \frac{V \cdot J(V)}{P_S}$

Maximum efficiency is achieved when: $\frac{d}{dV}(V \cdot J(V)) = 0$

Maximum current and power densities with $E_g=0.7eV$

Maximum efficiency for $E_g = 0.7 eV$

Best performance at V_m =0.45V with 22.5%

Maximum current and power densities with $E_g = 1.1 eV$

Maximum efficiency for $E_g = 1.1 eV$

Best performance at V_m =0.8V with 30%

Maximum efficiency for different band gaps

 E_g =0.7-1.8V T_s=5760K T_a=300K P_s=1275W/m2

Limiting efficiency for a single band gap cell in AM 1.5

Optimum of a single band gap cell is 33% at 1.4eV

Power spectrum of a black body at 5760K and power available to a optimum band gap cell

Photons with E<Eg are not used Photons with E>>E_a have the same effect as $E=E_a$

Requirements for ideal photoconverter

- Energy gap E_{g}
- All incident radiation with $E>E_g$ is absorbed
- Each photon creates one electron-hole pair
- Excited pairs do not recombine, except radiatively, as required by the the balance
- Charges are completely separated
- Charges are transported without losses

Energy gap E_g

The optimum band gap for AM1.5 of 1.4eV with 33%

III-V-semiconductors: GaAs 1.42eV InP 1.35eV

but expensive

Silicon 1.1eV would give a maximum efficiency of 29% Cheap and high quality crystals available

CdTe and CuInGaSe₂ are developed

Other parameters

Light absorption: Almost perfect absorption with E>Eg is achieved for layer thicknesses of 10-100 microns

Charge separation: Asymmetry is realized with pn-junctions (either highly doped layers of same materials or different materials) Junction quality is of central importance. (especially large areas)

Lossless transport:

Good Ohmic contacts, low resistance material for conduction (serial resistance), No leakage current (parallel resistance)

Optimum load resistance:

Should be optimized to match best operating point

For most applications rather arrays than individual cells are to be optimized

Reasons for losses

- Reflection at front surface
- Non-radiative recombination of carriers (defect sites trap charges, which subsequently recombine)
- Voltage drop due to series resistance $\Delta \mu \neq qV$

Ways to improve

- Concentrators
- Tandem cells
- Organic cells with a variety of band gaps

Types of solar cells with regard to technology

Concentrator systems

Ge / In_xGa_{1-x}As / In_xGa_{1-x}P world record: **41.6%** module efficiency: 28% system efficiency: 23%

direct sun light is demanded need for optical tracking

Si-wafer-based

c-Si, mk-Si world record : 24.7% module efficiency : 18%

energy intensive production of Si (very high purity needed)

dominant on market

Thin film

a-Si:H, nc-Si, CdTe, Cu(In,Ga)(S,Se)₂ nanostructured solar cells organic solar cells world record : 19.9% Cu(In,Ga)Se₂

integrated series connection

