In vitro assessment of artifacts induced by titanium dental implants in cone beam computed tomography

Key words: artifact, cone beam computed tomography, dental implant, in vitro, radiology, titanium

Abstract

Objective: The objective of this study was to evaluate the geometric pattern and the intensity of artifacts around titanium implants in cone beam computed tomography (CBCT) using an in vitro model.

Material and methods: Ten test models, each containing one 4.1-mm-diameter titanium implant, were cast from a human mandible using silicone impression material and dental stone. Each model contained an implant in one of the following single-tooth gaps: 37, 36, 34, 33, 31, 41, 43, 44, 46, and 47. For control purposes, three models without implants were produced. Each model was scanned five times using a CBCT scanner. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm, and 2 mm from the implant surface (GV\text{test}). GV were measured in the corresponding volumes of interest (VOI) in the models without implants (GV\text{ Control}). Differences of gray values (ΔGV) between GV\text{test} and GV\text{ Control} were calculated as percentages. To detect differences between GV\text{test} and GV\text{ Control}, the 95% confidence interval (CI) was computed for the values of ΔGV. Repeated measures ANOVA was used for the comparison of ΔGV at 0.5 mm, 1 mm, and 2 mm from the implant surface.

Results: Artifacts reflected by altered GV were always present in the proximity of titanium implants, regardless of the implant position. When comparing GV\text{test} and GV\text{ Control}, increased GV were found at the buccal and lingual aspects of the implant sites, whereas regions with reduced GV were located along the long axis of the mandibular body of the test models. A significant decrease in artifact intensity was found with increasing distance from the buccal implant surface (ΔGV\text{0.5 mm}: 45 ± 10% [SD], ΔGV\text{1 mm}: 28 ± 14% [SD], ΔGV\text{2 mm}: 14 ± 7% [SD]) (P < 0.001).

Conclusion: Artifacts around titanium implants in CBCT images were distributed according to a geometrical pattern.

Radiographic imaging of bone is an important diagnostic tool in implant dentistry [Harris et al. 2012]. Intraoral peri-apical radiography is commonly used for the follow-up examination of dental implants, aiming at assessing the marginal bone level and detecting signs of failing osseointegration [Albrektsson et al. 1986]. However, due to its two-dimensional nature, the diagnostic value of intraoral radiography is limited by geometric distortions and anatomical superimpositions [Tyndall & Brooks 2000; Patel 2009; Patel et al. 2009]. In addition, intraoral radiography does not allow assessing those parts of the alveolar process, which are directly in front or behind an oral implant with respect to the source of radiation. To date, there is very little scientific evidence on the long-term amount of bone remodeling and the efficacy of bone regeneration procedures at buccal and oral aspects of dental implants in humans [Chiapasco & Zaniiboni 2009; Teughels et al. 2009]. In the context of clinical research, there is, therefore, a need to develop an effective method for postoperative monitoring of buccal and oral bone at dental implants [Klinge & Flemming 2009].

Due to its ability to provide cross-sectional images at lower radiation doses compared with conventional multislice computed tomography (MCT), cone beam computed tomography (CBCT) has broadened diagnostic possibilities in dentistry [Rustemeyer et al. 2004; Ludlow et al. 2006; Ludlow & Ivanovic 2008]. Numerous studies found that CBCT provides accurate linear measurements of dentomaxillofacial structures [Lascala et al.
and the intensity of artifacts around titanium implants in CBCT using an in vitro model.

Material and methods

In vitro model
Ten test mandible models, each containing one 4.1 mm × 10 mm titanium implant (Straumann® Dental Implant System; Straumann AG, Basel, Switzerland), were cast using type IV dental stone (Noritake Super Rock, Noritake Co., Nagoya, Japan) (Fig. 1). Each model contained an implant in one of the following single-tooth gaps: 37, 36, 34, 33, 31, 41, 43, 44, 46, and 47.

A fully dentate dry human mandible was used for the production of the study models. Prior to the impression with silicone material (rema®-Sil; Dentaurum, Ispringen, Germany), a 1 mm thick layer of dental wax (Belladi Superior, Ruscher Belladi Dental Products, Altnau, Switzerland) was applied on the alveolar ridge to increase its dimension. Aiming at achieving a homogeneous dental stone density, the implants were positioned directly in the silicone mold, and each model was fabricated by a single plaster pour. Thereafter, 2-mm high titanium healing abutments (Straumann® Dental Implant System, Straumann AG, Basel, Switzerland) were placed on the implants.

For control purposes, three fully dentate models without implants were produced.

CBCT scanning
Each model was scanned five times using a 3D eXam CBCT device (KaVo Dental GmbH, Biberach, Germany), which is a version of i-CAT Next Generation scanner (Imaging Sciences International, Hatfield, PA, USA). For the scanning procedure, the models were mounted on the supporting plate provided by the manufacturer with the occlusal plane parallel to the horizontal plane and thereafter positioned in the center of field of view (FOV) using the laser orientation beams.
Benic et al. Artifacts around titanium implants in cone beam computed tomography

Mean differences of gray values between test and control models (D_{GVMean}) for different circumferential positions and implant sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>Buccal</th>
<th>Mesio-Buccal</th>
<th>Mesial</th>
<th>Mesio-Lingual</th>
<th>Lingual</th>
<th>Disto-Lingual</th>
<th>Distal</th>
<th>Disto-Buccal</th>
</tr>
</thead>
<tbody>
<tr>
<td>First molar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>22.34</td>
<td>28.37</td>
<td>22.52</td>
<td>22.56</td>
<td>22.32</td>
<td>22.13</td>
<td>22.13</td>
<td>22.32</td>
</tr>
<tr>
<td>± SD</td>
<td>1.97</td>
<td>1.72</td>
<td>1.82</td>
<td>1.73</td>
<td>1.96</td>
<td>1.91</td>
<td>1.91</td>
<td>1.96</td>
</tr>
<tr>
<td>Range</td>
<td>21.38 to 23.31</td>
<td>27.20 to 30.43</td>
<td>20.38 to 24.53</td>
<td>20.74 to 25.81</td>
<td>20.40 to 23.96</td>
<td>20.22 to 23.54</td>
<td>20.22 to 23.54</td>
<td>20.40 to 23.96</td>
</tr>
<tr>
<td>95% CI</td>
<td>21.42 to 23.27</td>
<td>27.29 to 30.57</td>
<td>20.45 to 24.46</td>
<td>20.81 to 25.74</td>
<td>20.47 to 23.89</td>
<td>20.29 to 23.47</td>
<td>20.29 to 23.47</td>
<td>20.47 to 23.89</td>
</tr>
<tr>
<td>Mean</td>
<td>22.47</td>
<td>28.41</td>
<td>22.65</td>
<td>22.69</td>
<td>22.42</td>
<td>22.27</td>
<td>22.27</td>
<td>22.42</td>
</tr>
<tr>
<td>± SD</td>
<td>1.95</td>
<td>1.71</td>
<td>1.82</td>
<td>1.78</td>
<td>1.95</td>
<td>1.91</td>
<td>1.91</td>
<td>1.95</td>
</tr>
<tr>
<td>Range</td>
<td>21.51 to 23.45</td>
<td>27.10 to 30.77</td>
<td>20.58 to 24.50</td>
<td>20.66 to 25.81</td>
<td>20.47 to 23.86</td>
<td>20.24 to 23.54</td>
<td>20.24 to 23.54</td>
<td>20.47 to 23.86</td>
</tr>
<tr>
<td>95% CI</td>
<td>21.60 to 23.35</td>
<td>27.19 to 30.67</td>
<td>20.64 to 24.46</td>
<td>20.74 to 25.76</td>
<td>20.53 to 23.81</td>
<td>20.31 to 23.49</td>
<td>20.31 to 23.49</td>
<td>20.53 to 23.81</td>
</tr>
<tr>
<td>Mean</td>
<td>22.59</td>
<td>28.64</td>
<td>22.71</td>
<td>22.78</td>
<td>22.58</td>
<td>22.43</td>
<td>22.43</td>
<td>22.60</td>
</tr>
<tr>
<td>± SD</td>
<td>1.94</td>
<td>1.72</td>
<td>1.82</td>
<td>1.80</td>
<td>1.95</td>
<td>1.90</td>
<td>1.90</td>
<td>1.94</td>
</tr>
<tr>
<td>Range</td>
<td>21.65 to 23.55</td>
<td>27.20 to 30.09</td>
<td>20.68 to 24.50</td>
<td>20.76 to 25.80</td>
<td>20.53 to 23.82</td>
<td>20.29 to 23.46</td>
<td>20.29 to 23.46</td>
<td>20.53 to 23.82</td>
</tr>
<tr>
<td>95% CI</td>
<td>21.71 to 23.46</td>
<td>27.29 to 30.11</td>
<td>20.65 to 24.50</td>
<td>20.77 to 25.77</td>
<td>20.58 to 23.87</td>
<td>20.35 to 23.51</td>
<td>20.35 to 23.51</td>
<td>20.60 to 23.87</td>
</tr>
</tbody>
</table>

Fig. 6. Boxplots of mean differences of gray values between test and control models (D_{GVMean}) for different circumferential positions and implant sites.

CBCT image evaluation

CBCT 16-bit DICOM datasets were imported in the eXam Vision imaging software (KaVo Dental GmbH, Biberach, Germany). Axial reconstructions perpendicular to the implant long axis were used for the data evaluation (Fig. 3). The dimensions of the volumes of interest (VOI) were set to 0.25 mm × 0.25 mm in the axial plane and 4 mm in the implant long axis, resulting in a total VOI of 16 voxels (Fig. 4). Along the implant axis, VOI were set from 3 to 7 mm apically to the implant shoulder. X-ray attenuation expressed as gray value (GV) was recorded at eight different circumferential positions (buccal, mesio-buccal, mesial, mesio-lingual, lingual, disto-lingual, distal, and disto-buccal) at 0.5 mm, 1 mm, and 2 mm from the implant surface (Fig. 4). To facilitate the reproducibility of the assessment, a transparent acetate foil with printed implant outlines was placed on the computer monitor over the CBCT images. The software provided one mean GV for each VOI.

Subsequently, CBCT images of the control models without implants were evaluated. Anatomical landmarks on the model surface (e.g. teeth, alveolar ridge) were used to select volumes corresponding to those with implants in the test models. These volumes were marked by means of the previously described acetate foil with printed implant and VOI outlines. Thereafter, GV were measured in the VOI corresponding to those measured in the test models.

Data analysis

GV within VOI for the three control models without implants were averaged to G_{VC} Control. Differences of gray values (D_{GV}) between models with G_{VTes} and without G_{VC} implants were calculated as percentages using the following formula: $D_{GV} = (G_{VTes} - G_{VC})/G_{VC} \times 100$.

D_{GV} for the VOI at 0.5 mm ($D_{GV0.5}$), 1 mm (D_{GV1}), and 2 mm (D_{GV2}) from the implant surface were averaged to D_{GVMean}.

The data were visualized by means of boxplots and described by mean values and standard deviations (SD) [PASW Statistics 18.0 software, IBM corporation, Somers, NY, USA]. The assumption of normality of the data was tested using Kolmogorov–Smirnov and Shapiro–Wilks tests.

To detect the relevance of differences between G_{VTes} and G_{VC}, the 95% confidence interval (CI) was computed for the values of D_{GV}. If the value 0 was not contained within the 95% CI, there was statistical evidence that the mean value D_{GV} was different from 0 at a significance level 0.05.

Repeated measures ANOVA together with Greenhouse-Geisser correction was used for the comparison of $D_{GV0.5}$, D_{GV1}, and D_{GV2}. Results of tests with P-values ≤ 0.05 were considered statistically significant.

Results

Figure 5 presents CBCT images of the study models showing altered GV around titanium implants. To ease the readability of GV, a color conversion scale [UCLA color-lookup-table] was applied using OsiriX 3.7 imaging software [OsiriX Foundation, Geneva, Switzerland].
The results of ΔG_{Mean} for different circumferential positions and implant sites are presented in Table 1 and Figure 6. Table 2 contains the results of $\Delta G_{0.5\,\text{mm}}$, $\Delta G_{1\,\text{mm}}$, and $\Delta G_{2\,\text{mm}}$.

ΔG_{Mean} values differed considerably between different circumferential positions and implant sites, ranging from -55% to 44%. At the buccal and lingual aspects of all the sites, ΔG_{Mean} showed positive values. In the samples with implants in the molar, premolar, and canine position, negative ΔG_{Mean} were found mesially and distally. For the samples containing implants at incisor sites, negative ΔG_{Mean} were generally found at the mesiobuccal, disto-buccal, disto-lingual, and mesio-lingual aspects (Table 1, Fig. 6).

When comparing measurements at different distances from the implant surface, considerable differences were found. At the buccal aspect, $\Delta G_{0.5\,\text{mm}}$, $\Delta G_{1\,\text{mm}}$, and $\Delta G_{2\,\text{mm}}$ averaged for all the implant sites amounted at $45 \pm 10\%$ (SD), $28 \pm 14\%$ (SD), and $14 \pm 7\%$ (SD), respectively (Fig. 7). These values were significantly different from each other ($P < 0.001$).

Discussion

In the present in vitro CBCT study, artifacts reflected by altered gray values were always present in the proximity of titanium implants, regardless of the implant position. A pattern for the distribution of artifacts around titanium implants in CBCT was detected. In all specimens, increased gray values were found at the buccal and lingual aspects, whereas the regions with reduced gray values were located along the long axis of the mandibular body. In other words, regions with reduced gray values were located mesially and distally at the molar, premolar, and canine sites and at the mesiobuccal, disto-buccal, disto-lingual, and mesiobuccal aspects of the incisor sites.

In a previous in vitro study, CBCT artifacts induced by titanium implants were investigated using a dental stone phantom of a mandibular premolar and molar region containing two implants and comparing two different CBCT scanners (Schulze et al. 2010). In the interproximal regions adjacent to the implants, a reduction of gray values of approximatively 50% was found. The degree of the gray value reduction decreased with increasing distance from the implant surface, which is in agreement with the results of the present study. Therefore, it was concluded that CBCT is unreliable for the evaluation of...
the regions adjacent to the surface of metal implants. However, no data were provided with respect to the artifacts at the buccal and oral aspects of the implants.

In a recent in vitro study, the accuracy of two different CBCT scanners for measurements of cortical bone adjacent to implants was evaluated using bovine ribs [Razavi et al. 2010]. The investigators found that the CBCT scanner with a spatial resolution of 0.125 mm provided accurate measurements in samples with a bone thickness > 0.8 mm. In a recent animal study, peri-implant bone defects were assessed by comparing the outcome of CBCT measurements to the histological standard [Corpas Ldos et al. 2011]. Measurements on CBCT images underestimated the bone defect depth by approximately 1 mm compared with those from the histological slices. Nevertheless, there was a significant correlation between measurements on CBCT images and histological slices. In another in vitro study carried out on pig mandibles, the accuracy and quality of the representation of peri-implant defects by CBCT was investigated [Mengel et al. 2006]. The study concluded that measurements from CBCT scans displayed only slight deviations in the extent of the peri-implant defects and that CBCT scans showed high imaging quality.

Thus, it can be assumed that despite its limitations in the presence of highly X-ray absorbing implants, CBCT has the potential for the quantitative assessment of buccal bone adjacent to implants and could provide valuable long-term data on biological processes that occur after implant placement and bone regeneration procedures. A limitation of the present study was its in vitro set-up, which only partially simulated a clinical situation of CBCT scanning. It is known that the density response in CBCT depends on the total mass inside and outside the FOV [Bryant et al. 2008]. In other words, the presence of anatomical structures (e.g. cranium, vertebral column) influences the gray value measurements of the jaw bones in CBCT. Differently from the jaw models used in this trial, the human jaws are heterogeneous structures made of various hard and soft tissues. In this study, the mandible models consisted of dental stone, because it is reasonable to assume that dense bone should have similar absorption properties due to the calcium component mainly determining X-ray absorption properties in both materials [Schulze et al. 2010].

It is important to be aware that in CBCT images, artifacts are always present in the close proximity of dental implants. However, no correlation between the artifact intensity and the inaccuracy of CBCT based dimensional measurements of peri-implant bone can be extrapolated from the findings of the present study. The fact that gray value alterations in artifact-affected areas vary at different circumferential positions around an implant might have important implications, and its knowledge enables the clinician to better interpret CBCT images. For example, the identification of artifact-affected regions with reduced gray values could decrease the risk of false positive diagnosis of peri-implant bone defects.

At present, further investigations are needed to validate the CBCT for the evaluation of tissues around dental implants. Thanks to the rapid development in the field of 3D radiographic imaging, CT devices with improved accuracy, reduced radiation doses, and scan times can be expected in the coming years.

Finally, it is important to emphasize that in the absence of clinical symptoms or certain postoperative complications, there is no indication for follow-up imaging of dental implants by means of CBCT. Due to the higher radiation burden compared with the two-dimensional radiography, CBCT imaging cannot be justified where there is no direct benefit to the patient, except as part of ethically approved clinical research [Harris et al. 2012].

Conclusions

Within the limitations of the present in vitro study, it can be concluded that in CBCT images:

- Artifacts were always present in the proximity of titanium implants, regardless of the implant position.
- Compared to control models without implants, increased gray values were present at the buccal and lingual aspects of all the implant sites, whereas the regions with reduced gray values were located along the long axis of the mandibular body.
- A significant decrease in artifact intensity was found with increasing distance from the implant surface.

Acknowledgements: The investigators gratefully acknowledge the statistical assistance of Ph.D. Malgorzata Roos, Department of Biostatistics, University of Zurich, Switzerland. This study was supported by the Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Switzerland. The implants were kindly provided by Straumann AG, Basel, Switzerland.

References

