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The Computational Network 
Imaging Frontier: Relevance 
for Digital Biomarkers in 
Precision Oncology.

	 											ancer	treatment	is	no	doubt	the	greatest	of	the	big	challenges	in	the	newborn	field	of	Precision		

	 											Medicine.	As	an	effect	of	advances	in	imaging	technologies	and	methods,	the	assessment	of	

	 											therapeutic	response	in	cancer	patients	now	involves	a	mix	of	qualitative	and	quantitative	aspects,	

	 												thus	calling	for	integrative	approaches	linking	together	various	types	of	evidences	obtained	from	

molecular	profiling,	cell	signaling,	experimental	omics	and	clinical	records.	Such	multiplexing	gives	origin	

to	a	multitude	of	data,	presenting	an	unprecedented	opportunity	for	building	multilevel	inference	algorithms	

targeted	to	cancer	therapy.	We	describe	a	network-driven	methodology	and	the	rationale	that	leverages	the	

plasticity	and	adaptability	of	possible	configurations	and	its	representative	power.	

From Images to Networks 

Modern imaging techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), Positron Emission Tomography (PET), 

when used in combination with contrast agents and radiotracers, allow measurements of anatomical details with high resolution and also 

maps of the dynamics generated by several physiological parameters. The overall result is a large number of 3D datasets, each describing an 

anatomical or physiological feature of the tumor and of the surrounded healthy tissue. Roughly speaking, a parallel can be made with taking 

several pictures of the same object from different angles; while each image alone shows a detail of the target object, the aggregate of all 

images defines the picture of it. Similarly, in imaging only the integration of all the information arising from different techniques can 

eventually represent the status of a tumor.

Such integration is known to be unfeasible in the image space, due to the redundancy of effects from many variables that need to be accounted. 

It is therefore a necessity to transform the image in another domain, making thus calculations possible. Networks build an ideal framework for 

dealing with imaging by integrating many variables in a relatively simple structure consisting of nodes and edges, the latter indicating the 

interactions between the former.

All 3D images consist of a 3D array of voxel, which is defined as a unit of graphical information that defines a point in three-dimensional space (x,y,z) 

The graphics community introduced volumetric representations for geometric objects more than three decades ago.1 Voxelization enables an 

approximation, i.e. a 3D scan conversion process of some continuous geometric shapes into an array of voxels in the 3D discrete space.2,3
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v(x,y,z) = F(f1, f2, … fn)x,y,z

For instance, macro categories of features 

may refer to: 

f1 =  physiological properties, such as 

 perfusion, oxygenation, ph, hypoxia…

f2 =  anatomical structure

f3 =  tissue characterization, such as 

 hypoxic, necrotic, viable, …. etc.

Graph partitioning approaches have been 

proposed on the basis of a simple couple 

of steps: a) Clustering of similar voxels to 

form regularly spaced supervoxels of a more 

uniform size and useful to compute robust 

statistics; b) Connectivity of supervoxels 

with their neighbors by edges, thus forming 

the graph. In order to account for shape 

and boundaries information, ad hoc features 

were considered for the supervoxels.4 The 

results of such segmentation algorithm is a 

reduction of the computational complexity, 

and the incorporation of qualitative features. 

Notably, the content of each voxel corresponds 

to a set of features F(f1, f2, … fn) determined

by the different image techniques. Such 

features are quite heterogeneous, and can be 

represented beyond physical parameters 

(density, diffusivity, etc.) and shape and 

composition parameters5 by measures, 

qualitative characteristics, scores, functions 

collected as quantifiable characteristics 

destined to be algorithmically processed to 

learn and generalize.6 In the image 

domain (I-space), each voxel can be 

therefore identified by the 

following equation:

In network domain (N-space), nodes are 

corresponding to image voxels. Edges linking 

nodes (or communicating voxels) are defined 

on the basis of similarity/dissimilarity 

measures of the features F. By means of this 

simple transformation, we keep both spatial 

(x,y,z) and feature F information, this 

latter delivering a key context for conducting 

inferential analyses. Networks are well-known 

computational frameworks, elucidating 

relationships between nodes through 

edges that can create dense or modular 

configurations (Fig 1).

Figure 1. PANEL A: Two partial network views with 

hubs (nodes rich in connectivity) and modules (black, 

red, green). Interactome networks from integration of 

various sources and small experiments identifying 23462 

interactions from 7385 proteins. PANEL B: Interactome 

network from large scale Mass Spectrometry 

experiments identifying 6463 interactions between 

2235 human cell proteins (Ewing et al, 2007).7

PANEL A
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Voxel-node associations (Fig 2) imply the 

possibility of mapping from image (I) to 

network (N) spaces aiming to gain a few 

important advantages:

l  A parsimonious representation of the informative 

contents, such that I ➞ N allows to reduce the 

overall complexity (dimensionality, redundancy 

etc.) and improve the inference process

l  The network metric can guide through 

interdependent relationships between nodes 

which appear in the form of connectivity 

patterns, and establish confidence and 

significance to such relationships

l  Through the features that were identified 

in I-space, an ensemble use of them can be 

operated in N-space and this can lead to 

identify interesting modules

From Networks to Images

From N-space, once patterns (paths, motifs, 

etc.) and modules have been detected and 

assessed as significant, one can return to the 

I-space with improved discrimination pow-

er. If the network metrics have revealed the 

presence of significant nodes regulating other 

node dynamics or the overall network, these 

are the preferred candidate nodes to be back 

transformed and highlighted in I-space. This 

is the case displayed in Figure 2, in which the 

network topology allows the identification of 

nodes with high centrality and/or degree in the 

N-space. Assuming that these nodes are highly 

important in the network hierarchy, their 

back-transformation in the I-space may reveal 

important features.

This sort of back-transform might be particularly 

relevant under conditions such as tumor 

microenvironment in which tumor and stromal 

characterizations might be intertwined and 

convoluted to an extent that does not allow 

clear assessment of specific effects. In other 

terms, the kind of deconvolution that can be 

operated in the N-space can reveal relationships 

between nodes, beyond each specific single 

network entity therefore, and thus pinpointing 

ensemble dynamics which were much harder 

to detect in the I-space. Figure 2. From image to network via voxel-node associations. Central nodes allow traffic 

between many nodes, thus they have high participation rates to many biological processes. 

Network DomainImage Domain

Network Metrics

Lower Centrality

Higher Centrality

PANEL B
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achieve, due to the dynamic convolution of 

structural and systematic features with more 

transient and even random ones. This is to 

say that we need to identify the object of our 

control, before finding the best possible way 

to implement it through selected drivers. 

Thus controllability requires from one hand 

an ensemble view, in which the denser the 

network presents the fewer are the drivers 

needed to control it, and the sparser are the 

networks the more drivers would be needed 

and the harder the effective control8. From 

another hand, selectivity is required with reference 

to specific targets, whose prioritization 

depends on structural or functional network 

characteristics. Owing to the impossibility 

of achieving full control, some risks must be 

taken into consideration due to limited load 

and capacity of each specific node, indicating 

the possibility that receiving links is possible 

till a limit beyond which the propagation 

of effects cannot be prevented. This will lead 

to so-called cascading failures or catastrophic 

events.9

Having established a controlled setting in 

N-space may be very important also for the 

impacts in I-space, after back-mapping. In 

particular, monitoring could be focalized in a 

restricted and landmarked tissue area, but in 

case a more spread area needs surveillance,

this can be performed through a number of 

well-selected anchor points. Recently, network 

inference work revealed the role of sentinel

nodes designed to bridge between cancer 

phenotypes. A clearly modular organization 

came out to indicate cancer hallmark specific 

and topological coupled characterization, 

elucidating further functional controllability 

aspects.10

Stability

The inherent complexity of tumor systems 

implies the presence of instabilities affecting 

the states and its critical transitions. In turn, 

network stability can be investigated in corre-

spondence with perturbations and the overall

resilience. In physics this type of dynamics

Tumor-Host tissue interaction

It is widely accepted that tumors show high 

level of heterogeneity when compared to the 

healthy tissue. Nevertheless, the tumor is not 

growing independently in the hosting organ, 

it is fully integrated in it. The interaction 

between tumor and hosting tissue is therefore 

crucial for two aspects: on one side, the tumor 

invades the surrounding tissue, on the other 

side the healthy tissue tries to prevent this from 

happening. 

This competition involves the surface of the 

tumor, together with deep regions connected 

with the outer part of the organ by means of 

vascular or lymphatic vessels. As a result of 

short-distance, such complex interaction can 

be described only by taking into account both 

tumor and healthy tissue physiology. In other 

words, only by considering tumors as subnet-

works of the hosting organ, each subject to 

different rules, can we adhere to real 

tumor-host tissue interaction dynamics. 

Following the same approach, we can include 

the interaction of tumor with the outer organs. 

Such interaction, which is mediated by the 

moving cells flowing from the primary tumor 

via both arteries and vein or lymphatic vessels, 

is responsible for the colonization of other 

organs that originates the metastatic process. 

We thus assume that metastases formation 

is a sort of long-distance interaction effect 

observable inside an expanded network covering 

tumor, hosting organ and metastatic organ.

Controllability

Ideally, the most intuitive way of controlling 

complex networks is to rely on just a few of 

their structural elements, nodes and links. 

For instance, the identification may target a 

minimum set of nodes through which the 

control over the entire networks could be 

exerted. These would be called driver nodes, 

and would of course be critical, however non

unique, meaning that multiple sets of drivers 

of the same size but with different nodes are 

expected to exist. Another aspect worth the 

consideration is that the functional characteri-

zation of complex networks is very hard to

is called phase transitions from ordered to 

disordered states and allows the inspection of 

critical points on the basis of control parameters.11

In short, the state of the system is seen as a 

vector with length established by the number 

of nodes, thus given by X = (x1,….,xn), with 

Xi as the state of node i. We assume here that 

time t has been fixed, i.e. X is stationary. 

Stability can be locally assessed by checking:

∆ Y = dY/dt = d(X-X*)/dt = AY
The importance of the matrix A is known: it 

embeds the node interactions, and from its 

eigen-decomposition the system stability 

properties can be investigated. The off-diagonal 

terms in A involve of course interconnectivities 

which may be simply on and off, or be a 

function of some parameters which may be 

totally or partially known. Since the network 

dynamics depend on the interactions, 

naturally enough also stability is influenced, 

and the main question is to find indicators of 

such stability, in particular telling us when the 

system is approaching conditions of instability. 

Such indicators correspond to early warnings 

and are often referred as tipping points, and 

typically a slow return to equilibrium after

small system perturbations is an indication of

a so-called critical slowing down, typically 

monitored by inspecting measures such as 

variance and power spectrum of state variables. 

In real world applications, stationarity can be 

replaced by quasi-stationarity owing to the

presence of attractor states.12 In the presence 

of perturbations, the system’s resilience is 

enabled to maintain normal functionality, 

and can induce such states in correspondence 

to the existence or the establishment of 

particularly robust phenotypes and/or in 

response to particular biological processes. 

Most states are thus to be considered unstable, 

and even if it is hard to predict when such 

condition can start, the ultimate effect is that 

of eventually inducing a system’s convergence

to stable or low-energy states, the attractors. 

Network resilience was recently examined in 

its complexity, which is typically depending
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on multi-dimensional manifolds involving 

bifurcation points or equivalently implying 

transitions to lowly resilient and less desirable 

states.13

An interesting aspect in cancerous systems 

refers to adaptive dynamics that include 

functional advantages from proximity to 

critical points.14 Tumor microenvironment is 

very likely an example of a system working 

near a critical point, between order and 

disorder, and characterized by vast and 

differentiated phenotypic variability, which 

may be interpreted as a strategy for continuous 

adaptation and eventually survival. It’s 

important to note that during tumor growth, 

while the inner part of the tumor tends to 

reach a sort of macroscopic stability, the 

border of the tumor continuously interacts 

with the healthy tissue modifying the 

microenvironment in order to promote tissue 

invasion. Of interest, the fact that with network 

ensembles the analytical and computational 

aspects of stability can be investigated, 

allowing the most efficient representation 

for heterogeneity in the origin domain, and 

likely observed close to criticality.

Big Data and Digital Biomarkers

Single-molecule centered research and 

developments aimed to digital detection of 

biomolecules for clinical applications are 

expected to generate a new wave of biomarkers.15 

An interesting direction was undertaken with 

the endo-phenotype characterization induced 

by the joint modeling of imaging and genetic 

variants associated with disease, supported 

by the assignment of probabilistic measures 

of relevance to both.16 A more general 

quantification of heterogeneity classified in 

multiple categories to assess imaging 

biomarkers was also recently proposed.17

Especially digital detection may ensure 

measurement resolution and marker sensitivity 

on the basis of discrete counts which are not 

available from system’s approaches. These

evidences will in part contribute to the novel 

Big Data, coupled with generated clinical 

evidence, such as phenotypic signatures.

Digital measurements will thus represent in 

perspective the type of data liquidity widely 

considered the most valuable resource for 

precision medicine. The reason relies in the 

translational power of digital biomarkers, a 

mix of physiological, pathological, behavioral 

and technological contents characterizing both 

normal and altered biological processes. 

Among digital biomarkers, imaging-related 

ones are expected to be relevant for 

establishing health vs disease conditions, 

thus monitoring health status as well as 

assessing therapeutic interventions and drug 

responses. A multifaceted fingerprint of 

individuals is thus obtained by leveraging on 

a synergy of new data types (behavioral and 

contextual beyond subjective and observational 

clinical evidences). 

Overall, the most expected impact is the 

possibility to be able to measure more 

objectively because of the synthesis of three 

newly acquired data properties: collective 

(aggregated group- or community-wise), 

comprehensive (multi-profiling) and 

integrative (multi-source evidences, including 

bias information). Consequently, more 

complete signatures of phenotypes explaining 

significant variation at individual and 

population scales could deliver timely and 

accurate personalized clinical decisions and 

patient stratification. Important sources of 

digital biomarkers are appearing worldwide, 

including all the Electronic Health Record 

(EHR) repositories. More recently, through 

The Cancer Imaging Archive (TCIA), the 

National Cancer Institute has supported the 

creation of both a Big Data resource and of 

a Quantitative Imaging Network to burst 

field developments and expand critical tumor 

response biomarkers in clinical trials.18 

Another initiative refers to the Multimodal 

Brain Tumor Image Segmentation Benchmark 

(BRATS), in which high-quality image data are 

analyzed by state-of-the-art algorithms and 

manual annotations are provided.19

The inaugural summit will bring 
together scientific and business leaders 

from around the world for a one-of-
a-kind event focused solely on 

precision medicine. 

It will foster significant attendee 
participation and engagement in panel 

discussions and presentations by 
visionaries in the field spanning the 
precision medicine continuum from 
early research to the clinical setting.

For more information please contact

Nigel Russell at 317-762-7220 

or via email 

nrussell@thejournalofprecisionmedicine.com

For information on speaking opportunities 

contact Damian Doherty at +44 1306 646 449 

or via email 

ddoherty@thejournalofprecisionmedicine.com 

www.precisionmedicineleaderssummit.com
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Figure 4. Tissue clustering 

(right side) of glioma tumor in 

human (top) and in mouse brain 

(bottom) visualized with MRI. 

Three types of tissues are 

identifiable: necrotic (green), 

proliferating (light blue), and 

highly-angiogenic tissue (red). 

Quantitative Imaging to assess 

cancer-targeted therapies

Heterogeneity implies that in each patient 

and in each tumor a variety of features can 

be present (Fig 3). Imaging techniques allow 

to monitor intra-tumoral evolution by 

extracting, mining and analyzing quantitative 

data. Variation is present in imaging features 

identifying cell clusters, reflected into 

differentiated molecular characteristics, 

contrast enhancement or necrosis 

identification (Fig 4). 

Establishing proper quantitative metrics is 

thus crucial to measure temporal and spatial 

heterogeneity.20 While statistical inference 

could be conducted from the extracted data, 

the most important step is to build suitable 

representation systems in which the mapping 

to tumor regions with spatially distinct 

environments can be operated. Figure 3. co-registration of 

FDG-PET and CT of glioma tumor (red)

(http://www.osirix-viewer.com/datasets/).
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Cancer treatments can thus be seen as network 

perturbations, with the tumor-driven network 

as part of the hosting (organ-driven) network. 

The effects of any perturbation affect not only 

the tumor behavior but also the healthy tissue. 

Looking at a therapeutic perspective, we can 

use the modification caused in the network 

to monitor different types of effects, such as 

treatment efficacy in tumor regions and treat-

ment toxicity in the healthy tissue (See Box 1).

Tumor habitats become particularly complex 

when microenvironment is considered, being 

the latter a context in which multiple tissue 

types interact by enabling processes such as 

inflammation, immune response and energy 

metabolism.21 As previously mentioned, 

short and long distance interactions between 

cancer and stromal cells occur, depending 

on prevailing tumor and host environment 

programs (for instance, pro-invasion versus 

anti-metastasis, respectively) (see Box 1). 

These interactions can be naturally mapped 

onto networks and their spatiotemporal 

dynamics reconstructed due to the structural 

organization with built-in quantitative metrics. 
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BOX 1.  Linking cancer imaging to networks

Tumor is a multifactorial disease 

characterized by substantial 

heterogeneity which multimodal 

image techniques can quantify. 

Networks integrate images information 

encapsulated at a voxel level and 

transfer them from multiscale physical 

to multiscale computational settings.

Perturbations = Treatments, induce 

changes in network architecture, and 

identify:  

l  Treatment efficacy (tumor tissue)

l  Side effects (healthy tissue) 

 

Tumor Microenvironment:

Multiple tissues participate to form a 

network in which the metric identifies:

l  Short-distance interactions involving 

 immune-cells infiltration, vasculature, 

 inflammation dynamics, etc.

l   Long-distance effects involving 

 metastases.


