
X-ray micro-tomography for investigations of brain tissues on
cellular level

Anna Khimchenkoa*, Georg Schulza, Hans Deyhlea, Peter Thalmanna, Irene Zanetteb,
Marie-Christine Zdorab,c, Christos Bikisa, Alexander Hippd, Simone E. Hiebera, Gabriel

Schweighausere, Jürgen Henche, and Bert Müllera
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ABSTRACT

X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, perfor-
mance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D)
characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a labo-
ratory environment. Using the laboratory-based microtomography (µCT) system nanotom® m (GE Sensing
& Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester
Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution
down to 0.45 µm for visualization of a human cerebellum specimen down to cellular level. We have shown that
all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBµCT), synchrotron
radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based
single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range.
The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (H&E)
stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome
restrictions of limited beamline access for phase contrast measurements, we have equipped the µCT system
nanotom® m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample
consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared
to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would
also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in
comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast
data provide comparable results to synchrotron radiation based phase contrast data.
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1. INTRODUCTION

Human brain belongs to the most impressive1 organs within the body and its disorders are a severe health
problem of a modern ageing society.2 Being diverse in macroscopic symptoms, neurodegenerative disorders have
much in common on (sub-)cellular level: loss of cells, demyelination or damage of cell axons.3 There are many
open questions in the field. For example, exact causes and key clinical features of a degenerative process, such as
the role of metal ions,4–6 are not clear; knowledge about neuroanatomical connections is limited as well.7 Thus,
high-resolution three-dimensional (3D) visualization of brain tissue can be highly beneficial.8
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2.3.1 Laboratory-based double-grating interferometry

In order to extend capabilities of the nanotom® m toward phase contrast, it was equipped with a double-
grating interferometric set-up, for more details see.30 Laboratory-based double-grating (LBGI) measurement
was performed with parameters summarized in Table 1. The source operation mode was set to �mode 1�,
corresponding to an estimated source size of 2 µm, as specified by the supplier. Due to a sufficiently small source
size the source grating (G0) was not required. Measurements in single-grating configuration were not possible
and the analyser grating (G2) was required for the set-up as the detector is not able to resolve the interference
pattern.

Figure 2 A - C shows experimental set-up for a cone-beam laboratory-based double-grating interferometry.
The distance between the gratings corresponds to the 1st Talbot order. The gratings were fabricated for a design
energy of 30 keV (microworks GmbH, Karlsruhe, Germany). A phase-stepping technique was used.31 Grating
G1 was scanned over 2 periods of interference pattern in 11 phase steps. The phase recovery and tomographic
reconstruction of the data were carried out in Matlab R2014a (MathWorks, Natick, USA).

2.3.2 Synchrotron radiation based single-grating interferometry

Figure 2 D - E schematically shows the set-up for synchrotron radiation based single-grating interferometry
(GI) and Figure 2 F photograph of the set-up. GI of a human cerebellum specimen was performed at Diamond-
Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK).32 A monochromatic X-ray beam was
extracted from a silicon <111> double crystal monochromator. After being transmitted through the sample, the
X-ray beam was collected by a scintillator-based X-ray detector pco.4000 (PCO AG, Kelheim, Germany) with
4× and 2× optical magnifications, with 2 single-grating set-ups: GI8 and GI10, for more details see Table 1. For
both set-ups the distance between the gratings corresponds to the 1st Talbot order. The absence of a water tank
in the set-up caused phase wrapping between the sample and air. Thus a �no-tank correction� was performed
before phase retrieval.33 Data processing and reconstruction were performed in a similar to LBGI manner.

2.3.3 Synchrotron radiation based in-line single distance tomography

Synchrotron radiation based in-line single distance phase contrast imaging of a human cerebellum specimen was
performed at Diamond-Manchester Imaging Branchline I13-2 using a pco.4000 detector. The effective pixel sizes
were 0.45 µm (SDPR0.45) and 1.1 µm (SDPR1.1) depending on the optical magnification of the scintillator-based
detector. Since the specimen diameter was bigger for the effective pixel size of 0.45 µm than effective field of view
(FOV), measurement was performed in a local tomography configuration. Flat-field and dark-current corrections,
zero-padding, and phase recovery of tomography data were performed using the software tool ANKAphase34 with
an input parameter δ/β = 240621 for 1.1 µm effective pixel size and δ/β = 414 for 0.45 µm effective pixel size. The
second δ/β value was decreased in order to reduce gradient artefacts in the data based on qualitative assessment.
The tomographic reconstruction was done in Matlab R2014b (Simulink, The MathWorks, Inc., USA).

2.3.4 Data registration

For the comparison of tomography data acquired with selected modalities, datasets were registered using auto-
matic 3D/3D registration tool19,35 with rigid transformation constraints. The SDPR with effective pixel size
1.1 µm was set as reference dataset.

3. RESULTS AND DISCUSSION

3.1 Phase contrast versus absorption contrast

Figure 3 presents selected registered tomographic slices measured by LBµCT (A, D), GI10 (B, E) and SDPR1.1

(C, F) with line profiles. The figure shows for each imaging modality one selected slice of a human cerebellum
specimen with a magnification. Magnifications in Figure 3 E - F are cropped around the region occupied
by structures of interest. Visual inspection of the registered slices reveals that Stratum granulosum, Stratum
moleculare, individual cells, and blood vessels within the white matter can be recognised for all modalities in a
comparable manner. Intensity differentiation between Stratum granulosum and Stratum moleculare, which both
belong to grey matter, can enable intensity-based segmentation of individual cerebellar layers. LBµCT data
exhibits a higher level of noise, thus additional filtering is essential for a better feature extraction.
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data which is almost alike to synchrotron radiation based phase contrast, on the example of human cerebellum
specimen.

It is highly beneficial to correlate morphological structures with their cellular functions.38 X-rays are a
powerful tool in non-destructive volumetric imaging of micromorphology. We suggest that laboratory-based
tomography could be combined with optical microscopy to characterize 3D structure of soft materials.39 Within
this context, X-ray tomography enables the 3D visualisation and quantification of tissues prior to histological
sectioning.1,40

In this work, we present selected tomography results of FFPE human cerebellum specimen at varying contrast
and resolution. The highest resolution was achieved for synchrotron radiation based in-line single distance phased
contrast tomography. We qualitatively compared selected tomography methods, reaching a cellular resolution.
In order to identify the appropriate tomography approach to visualize micromorphology of soft tissue a more
detailed comparison is required, which should include synchrotron radiation based double-grating interferometry
with a water tank, synchrotron radiation based single-grating interferometry with a water tank, etc. Such a
comparison should include instrumental and time requirements for data acquisition and reconstruction, as well
as data quality and a potential for data combination.
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