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ABSTRACT

Registration of microscope images to Computed Tomography (CT) 3D volumes is a challenging task because
it requires not only multi-modal similarity measure but also 2D-3D or slice-to-volume correspondence. This
type of registration is usually done manually which is very time-consuming and prone to errors. Recently
we have developed the first automatic approach to localize histological sections in µCT data of a jaw bone.
The median distance between the automatically found slices and the ground truth was below 35 µm. Here
we explore the limitations of the method by applying it to three tomography datasets acquired with grating
interferometry, laboratory-based µCT and single-distance phase retrieval. Moreover, we compare the performance
of three feature detectors in the proposed framework, i.e. Speeded Up Robust Features (SURF), Scale Invariant
Feature Transform (SIFT) and Affine SIFT (ASIFT). Our results show that all the feature detectors performed
significantly better on the grating interferometry dataset than on other modalities. The median accuracy for
the vertical position was 0.06 mm. Across the feature detector types the smallest error was achieved by the
SURF-based feature detector (0.29 mm). Furthermore, the SURF-based method was computationally the most
efficient. Thus, we recommend to use the SURF feature detector for the proposed framework.
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1. INTRODUCTION

Image registration as part of medical image analysis plays an important role in clinical research. It helps to
improve the accuracy of identifying disease progression and making diagnosis,1 in both functional and morpho-
logical analysis2,3 and in surgery planning.4 Extensive research has been done in the field of multi-modal 3D-3D
registration for CT, magnetic resonance imaging (MRI) and ultra sound (US).4–6 Meanwhile, multi-modal regis-
tration of two dimensional images to three dimensional data has not been well investigated. However, there is a
great need for 2D-3D registration. For example, histological sectioning is the gold standard procedure for tissue
analysis in clinics. It is beneficial to determine the position of a histological slide in 3D space such as µCT but
only a few papers have addressed this problem.1,7, 8

The majority of existing methods for 2D-3D registration use various reconstruction techniques.9–12 They,
however, require serial sectioning which is not always available. A single slice to 3D volume alignment, or so
called slice-to-volume registration is another type of histology registration.8,13–17 One of the recent approaches
used generalized Hough transform to initialize several slide positions in 3D and then applied affine registration
by maximizing mutual information.7 Wachowiak et al.18 applied particle swarming optimization to localize 2D
slices in reconstructed histology volume. Osechinskiy et al.19 used intensity based similarity metric for nonrigid
slice-to-volume registration. Three classes of spline function were evaluated in histology to MRI registration
framework. Slice-to-volume registration proposed by Kim et al.16 represented coordinates of 2D histological
slide in 3D space using non-linear polynomial functions. Due to high complexity of multi-modal registration and
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Figure 1. Pipeline of the 2D-3D localization of histology in X-ray dataset. First, histological image is matched with
each image in the 3D dataset. The feature point cloud of the 3D dataset is built. Second, the cloud is filtered to remove
outliers. Last, the plane is fit to the cloud and a matching image is extracted out of the 3D volume

high number of degrees of freedom, manual intervention is often required at the stage of either segmentation or
near ground truth initialization.

In our group we have developed an automatic approach to localize a single histological slide in 3D µCT data
(Fig. 1). The main step in the proposed algorithm is robust feature detection and matching. In our previous
studies,20,21 we found that SURF22 performs best in comparison to SIFT23 and ASIFT24 for µCT data of a
jawbone. In the current study our goal is to extent the application of the proposed technique to other X-ray
based imaging modalities. We analyzed three datasets - grating interferometry (XGI), laboratory-based µCT and
single-distance phase retrieval (SDPR) in order to evaluate the method’s performance. In addition, we explore
other robust feature detectors, so that the best performing parameters can be identified.

2. DATA ACQUISITION

To analyze the performance of the algorithm we use a cylindrical specimen, obtained post-mortem from the
cerebellum of a 73-year-old male. The specimen was 6 mm in diameter and 4.5 mm in length. It was extracted
from the donated human brain and fixed in 4% histological-grade buffered formalin. The sample was dehydrated
and paraffin-embedded according to standard pathology procedures. The cylindrical sample for the tomography
measurement was extracted from the paraffin block using a metal punch with an inner diameter of 6 mm.

Grating interferometry (XGI)

High-resolution tomography experiment was carried out in the water tank at the beamline ID19 at the European
Synchrotron Radiation Facility (ESRF, Grenoble, France) using a pink beam with a mean X-ray energy 19.45 keV
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and effective pixel size 5 µm. Detailed description of instrumentation at beamline can be found elsewhere.3,25

The interferometer used for the measurement consisted of Si phase grating G1 with a period of p1 = 4.8 µm and
structure height h1 is 23 µm and Au analyser grating G2 with a period of p2 = 2.4 µm and structure height h2
is 50 µm. The intergrating distance was 465 mm, corresponding to the 11th Talbot distance. Grating G1 was
scanned over one period of interference pattern in 3 phase steps, with an exposure time of 2 s per step. The scan
was performed over 360◦ in 1199 angular intervals. The phase recovery and tomographic reconstruction of the
data was carried out in Matlab R2014a (MathWorks, Natick, USA).

Laboratory-based µCT

Laboratory-based µCT experiment was carried out using the absorption-contrast µCT system nanotom R© m
(phoenix|x-ray, GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany) with W transmission tar-
get.26,27 The µCT was performed with a voxel length of 3.5 µm, acceleration voltage 60 kV, e-beam current
350 µA and exposure time 3 seconds. For the acquisition, 1900 projections were recorded over 360◦. Measure-
ments were taken in the tube operation mode “0”. Data acquisition and reconstruction were performed with
datos|x 2.0 software (phoenix|x-ray, GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany). After
data reconstruction, the volume was median filtered using VGStudio MAX 2.0 (Volume Graphics, Heidelberg,
Germany).

Single-distance phase retrieval (SDPR)

The measurement was performed at the beamline ID19 using pink beam with a mean X-ray energy 36 keV,
effective pixel size 3.75 µm, corresponding to a propagation distance of 2.6 m.28 Over 360◦ 1500 projection with
an exposure of of 0.3 s have been acquired. For the phase recovery we have used the software ANKAphase,28

which implements Pagannin’s phase recovery algorithm, with flat field and dark field correction. The ration of
decrement of reflective index δ over the absorption coefficient β was set to 2406, corresponding to the value of
paraffin. After phase recovery, the tomographic reconstruction of the data was carried out in Matlab R2014a
(MathWorks, Natick, USA).
All the 3D datasets were rescaled to the same square image size and resolution of 10.2µm. The size of XGI
datset was 604× 604× 429, nanotom µCT was 604× 604× 101, and SDPR was 604× 604× 800. The length of
XGI dataset was 4.4 mm, µCT was 0.4 mm and SDPR was 5.6 mm.

Histological sectioning

After having been scanned in the paraffin cylinder form, the cerebellum sample was re-embedded in a standard
paraffin block for subsequent histological sectioning. This was done by partial melting and the addition of fresh
paraffin. Starting from the upper part of the sample, tissue sections were obtained using a microtome, left
to float on a water bath and then collected one by one and mounted on glass slides. Subsequently, the slides
were dried out and stained with haematoxylin and eosin (H&E), following a standard protocol. High-resolution
photographs of the slides were taken at 2× optical magnification on a combined light microscope/digital camera
system. In total four histological slides were cut. All of the resulting images were converted to greyscale, rescaled,
cropped and flipped, as needed.The final resolution of the histological images corresponds to the resolution of
3D datasets, i.e. 604× 604 pixels.

3. METHOD

To register a histological slide into a 3D dataset, we proposed a three steps approach (Fig. 1). First, find
corresponding feature points between histological slide and each image in the 3D dataset. Second, after storing
all the 3D points in a sparse matrix, filter outliers. And last, fit a model of a plane into the filtered 3D point
cloud and extract a corresponding image from the 3D dataset.
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Feature detection

The image of a histological slide differs from the one of X-ray based modality. One of the main differences is that
histological slide is arbitrarily rotated. Therefore, in order to compare it with X-ray image, rotation invariant
similarity measure is required. Furthermore, illumination of optical microscopy does not coincide with X-ray
acquisition, which requires illumination invariance from similarity measure. Based on these main requirements we
have chosen three feature detectors which are invariant to the properties mentioned above, i.e. SURF, SIFT and
ASIFT (Fig. 2). The first proposed feature detector SIFT is built on robust extraction of gradient information
from an image. Combination of non-maxima suppression in scale pyramid of the image with unstable feature
rejection allow for robust feature points identification. The feature points matching is done using descriptor
vector. In order to compare the images rotation and illumination invariant descriptor is assigned to each of the
feature point. The descriptor determines the main gradient orientations of a neighborhood of the point. Each
value of the descriptor vector is represented relative to the dominant orientation of the gradients, which makes it
rotation invariant. It is also normalized to account for differences in image’s illumination. After constructing the
descriptors in two images, the feature points are matched between the images by calculating the distance between
the descriptors. If the distance falls into a certain threshold, it is saved as matched. To increase the stability of
the matches, we filter the matches in each image that are too close to each other, i.e. the distance is less than
2 pixels. When the matches are very close, they usually have corresponding points that are far from each other
in the second image. This means that one of the matches is a certain outlier. By filtering both of them, we might
loose one inlier. This however negligible in comparison to the total number of matching points and robustness is
favorable. The feature matching algorithm was identical for all three feature detection methods. In the current
work we use vlfeat implementation of SIFT algorithm∗.

The SURF algorithm is considered as a speed-up version of SIFT. However, the pipeline for feature detection
and construction of a descriptor vector noticeably differ from the one of SIFT. The feature detector is based on
approximation of Hessian matrix applied to integral images.29 Moreover, instead of down sampling the image in
scale pyramid, the scale space is formed by up-scaling the filter size. The descriptor is built as on Haar-wavelet
responses within feature point neighborhood. Moreover, the dimension of the descriptor vector is lower than in
SIFT, i.e. 64 and 128 values correspondingly. For the SURF feature detector we use open source code available
online †. The number of octaves and initial sampling were set to one. Other parameters were left as default as
well as for second nearest neighbour (0.8).

The ASIFT implements affine invariance for feature detection which is not addressed in SIFT. The ASIFT
simulates latitude and longitude angles of the camera view so that all six parameters of affine matrix are covered.
The additional parameters are then complement SIFT features. The affine deformations between histology image
and tomography image is often present especially in soft tissue samples such as cerebellum. The slide thickness
is very small so it is almost impossible to retain the same shape after cutting and slide fishing. The code is also
available online ‡.

We apply one of the feature detectors to histological image and each image in the X-ray dataset. The
matching points of 3D dataset are subsequently stored in a sparse 3D matrix by setting to value to one if the
point exist, otherwise zero. After building the 3D sparse representation of the 3D X-ray dataset, we can reduce
the registration problem to a density problem. Now the position of the histological slide corresponds to increased
density of a feature points in the 3D point cloud.

Plane fitting

The obtained point cloud contains a lot of outliers, therefore, prior to fitting a plane we need to filter the cloud.
First, we remove background points by filtering those lying further from the center than image.size/2.3. To
identify the points that are located in the denser neighborhood we convolve each point with a 3D Gaussian.
This allows us to assign higher weights to the points that are more likely to be correct correspondences with the
histological image. Then depending on the total number of points, we leave only those with the highest weights.

∗http://www.vlfeat.org/overview/sift.html
†http://ch.mathworks.com/matlabcentral/fileexchange/28300-opensurf–including-image-warp-
‡http://www.ipol.im/pub/art/2011/my-asift/
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Figure 2. Example of matching points of XGI image and histological image using SURF (a), SIFT (b) and ASIFT (c) as
a feature detector.

The filtered point cloud is now used to find a plane that corresponds to the histological sectioning. To fit a model
of a plane we use modified version of the RANSAC algorithm.20,30 RANSAC randomly selects three points out
of the 3D point cloud and builds a plane. Than it classifies all the points of the cloud to inliers and ouliers.
The inliers are the points that are located within a certain distance from the plane. Similarly, the ouliers are
the points further than the distance threshold from the plane. After 15 000 of such iterations, the plane with
the highest number of inliers is selected. In order to reduce the search space of possible models of the plane, we
constrain the tilting angle. Given approximate range of angles of the histological cut, the correct cutting plane
can be allocate with a high accuracy. In our implementation the distance threshold was 10 pixels and the tilting
angles were αgrat = π/18, αnanotom = π/28, αpaganin = π/20.

4. RESULTS

To estimate the accuracy of the proposed techniques, we calculated angle and position differences between
automatically and manually found slices. Coordinates of the normal vectors to the planes are first converted to
the spherical coordinate system. The obtained vertical distance coordinates of the planes are then subtracted
to find the accuracy of the slice localization along vertical axis (Fig. 3 a). The tilting angle was calculated as
arccos of a normalized scalar product between the two normal vectors (Fig. 3 b).

Performance of the algorithm on the XGI dataset was significantly better than on the µCT and SDPR datasets
(Wilcoxon test p = 0.0012 and p = 0.0011 correspondingly). The average distance error for the XGI dataset
did not exceed 0.13 mm. Among different feature detectors, ASIFT showed the smallest median position error
(0.06 mm) by accurately localizing all of the histological slides. Moreover, ASIFT was the best at identifying the
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Figure 3. Comparative error for the position (a) and the angle (b) of the plane for three X-ray based imaging techniques.
On the x-axis are shown the performance of the SURF- (left), SIFT-(middle) and ASIFT-(right) based methods for each
dataset. The median values are shown as black horizontal lines inside the boxes.

angle (median error was less than one degree). ASIFT-based localization did not achieve the same accuracy in
µCT (0.6 mm) and SDPR (0.42 mm) datasets and was lower than for SURF-based method (0.3 mm and 0.3 mm
correspondingly). Overall, the SURF based feature detection gave better results in the three types of datasets.
The total average distance error for SURF-based feature detection was 0.29 mm, for SIFT 0.33 mm and ASIFT
0.41 mm. The difference, however, was not significant (Wilcoxon test p>0.6). One slice was excluded from the
plot because the ASIFT-based feature detector for the µCT dataset was not able to find a corresponding slice.

In Fig. 4, we show examples of found matching slices for three out of four histological slides. The registration
results for the XGI dataset look very similar to the histological slide (Fig. 4 a). All of the feature detectors
localized this slide with high precision. In contrast, for the SDPR dataset only SURF- and ASIFT-based
registration achieved reasonable results (Fig. 4 b). This slide was particularly challenging because it was cut
from the top of the specimen. The 3D datasets did not have enough slices and consequently feature points
for robust plane fitting. The laboratory-based µCT dataset had a small size in vertical direction. Therefore,
manual and SURF-based slices include black area due to insufficient information for slice interpolation (Fig. 4 c).
Nevertheless, the automatically found slices look similar to the ground truth.

5. DISCUSSION

We analyzed the performance of the automatic algorithm that can find position of a single histological slide in
a 3D µCT volume proposed in Chicherova et al.20 Within this framework we evaluated three feature detection
algorithms and extended its application to three X-ray based imaging modalities. The highest slide localization
accuracy was identified for the ASIFT feature detector applied to grating interferometry dataset. All four
histological slides were found with a median error of 0.06 mm. Across the X-ray datasets, the SURF showed the
best performance. The average position error was 0.29 mm whereas for the SIFT and the ASIFT it was higher
(0.33 mm and 0.41 mm correspondingly).

The main element of the proposed slice-to-volume matching algorithm is a feature detector. The analyzed
feature detectors mainly rely on gradient values of an image and perform best for high contrast images. The
cerebellum is challenging data for the proposed method because it consists of homogeneous parts of grey and
white matter, and consequently low gradient values.31,32 Therefore, one of the future improvement of the method
can be associated with a development of dense multi-modal feature detector. By dense sampling of an image, not
only edges will be considered in feature matching, but the entire image. Another challenge is multi-modality of
the images. SIFT-based feature detectors are not considered to be suitable for multi-modal matching and initially
were made for object recognition. Moreover, due to deformation induced by re-embedding of the specimen, a
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Figure 4. Comparative slice registration for three histological slides (1st column) of three X-ray based acquisition tech-
niques. The resulted tomography slices are found with SURF-(3rd column), SIFT-(4th column) and ASIFT-(5th column)
based feature detectors.

plane can not fully match curved surface of a corresponding slice.31 In spite of all these challenges, the framework
gives reasonable results in all of the datasets and shows high potential in application to other imaging modalities
such as MRI and US.

The accuracy of slide localization varies from one dataset to another and depends on the feature detectors
(Fig. 3). Although the ASIFT applied to the XGI dataset identified histological slides with the highest accuracy
it failed to localize a matching slice in the laboratory based µCT. Low contrast of the X-ray images and small
vertical resolution did not allow for correct plane fit and the resulting plane lay outside the boundaries of the
specimen. Moreover, the 3D feature point cloud obtained with the ASIFT required adaptation of the outlier
filtering strategy. The number of feature points for this feature detector was twenty times higher than for the
SURF and the SIFT algorithms. Hence, after the second nearest neighbor criteria an additional outlier removal
technique could be used (L1-norm, RANSAC Homography). We conclude that SURF feature detection should
be chosen as a general technique in the proposed framework. On average it produces more stable results across
different datasets with the lowest error (0.29 mm) and it is faster then other feature detectors. The total time
required for localizing a histological image including all feature calculation for the grating interferometry dataset
(604× 604× 429) was 75 sec for SURF detector, 101 sec for SIFT and 32 minutes for ASIFT.

To conclude, in this study we explored the parameters of the novel automatic slice-to-volume matching
algorithm and extended its application to soft tissue specimen and other X-ray based modalities. The proposed
framework showed reasonable performance on a cerebellum sample and across different modalities. All of the
analyzed feature detection techniques showed high accuracy in slice localization. Therefore, the proposed method
can be used as a general automatic solution for the histology slice-to-volume matching problem.

Proc. of SPIE Vol. 9967  996708-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/23/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



ACKNOWLEDGMENTS

The work was funded by the Swiss National Science Foundation (SNSF) project 150164 and R’Equip project
133802. Data were obtained with the support of SNSF project CR23I2 125 406 and the ESRF (proposal MD-407).

REFERENCES

[1] Seise, M., Alhonnoro, T., Kolesnik, M., et al., “Interactive registration of 2D histology and 3D CT data for
assessment of radiofrequency ablation treatment,” Journal of Pathology Informatics 2(2), 9 (2011).

[2] Müller, B., Deyhle, H., Lang, S., Schulz, G., Bormann, T., Fierz, F. C., and Hieber, S. E., “Three-
dimensional registration of tomography data for quantification in biomaterials science,” International journal
of materials research 103(2), 242–249 (2012).

[3] Schulz, G., Waschkies, C., Pfeiffer, F., Zanette, I., Weitkamp, T., David, C., and Müller, B., “Multimodal
imaging of human cerebellum-merging X-ray phase microtomography, magnetic resonance microscopy and
histology,” Scientific Reports 2, 826 (2012).
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