A1: Early quantum mechanics: Planck's law

Show schematically the power spectral density of the radiation emitted by a black body for two different temperatures as a function of the wavelength. (0.5 points)

A2: Free particles

What is the solution to the Schrödinger equation for a given energy E in free space in one dimension? (0.5 points) What is the degeneracy? (0.5 points) What is the momentum and the velocity of a particle in each state? (0.5 points)

A3: Confined particles

An electron is confined to a square in 2 D with zero potential inside and infinite potential energy outside (infinite walls). Calculate the eigenfunctions. (1 point) What is the degeneracy of the 3 lowest energy levels? (1 point)

A4: Scattering problems: the principle of the Scanning Tunneling Microscope

A scanning tunneling microscope (STM) measures the tunneling current (which is proportional to the tunneling transmission T) between a sharp tip and the surface of another material. Consider a sharp tip made of Tungsten operating in the low-bias regime so that the energy for an electron to leave the structure is given by the work function of Tungsten $\phi_{\mathrm{w}}=4.5 \mathrm{eV}$, i.e., $V_{0}-E=\phi_{\mathrm{w}}$. We neglect here the work function of the target material.
(a) In the lecture, the tunneling transmission through a barrier in the weak tunneling ($L \sqrt{2 m\left(V_{0}-E\right)} / \hbar \gg 1$) limit was derived as

$$
T=16 \frac{E}{V_{0}}\left(1-\frac{E}{V_{0}}\right) \mathrm{e}^{-2 L \sqrt{2 m\left(V_{0}-E\right)} / \hbar}
$$

Rewrite the exponential part of this equation in the form $\mathrm{e}^{-L / L_{0}}$ and determine the decay constant L_{0} for the Tungsten tip. (0.5 points)
(b) Let us assume that the tip follows the trajectory indicated in the diagram above a sample surface across a surface with an object of height $\Delta L=2 \AA$, made of the same material as the rest of the surface, at the position B . What is the ratio of the tunneling currents at position B and position A ? (1 point)

A5: Harmonic oscillator

A harmonic oscillator at time $t=0$ is at state

$$
\psi(t=0)=\frac{1}{\sqrt{3}}\left(\Phi_{0}+\Phi_{1}+\Phi_{2}\right)
$$

where Φ_{n} is the n-th eigenstate of the harmonic oscillator. Calculate i) $\psi(t)$, (1 point) ii) $\langle E(t)\rangle$ (1 point) and iii) $\langle x(t)\rangle$. (1 point) Use the ladder operators for the calculation!

A6: Spherical harmonics and hydrogen atom

(a) We consider a spin-less particle which only moves on the surface of a sphere (no radial degree of freedom) with the Hamiltonian $H=\frac{\hat{L}}{2 m r^{2}}$. What are the energy eigenvalues and the degeneracy? (1 point)
(b) What is the wavelength of light that is absorbed in the optical transition between the state $(3,1,0)$ to state $(2,0,0)$ in a hydrogen atom? The indices are the usual quantum numbers ($\mathrm{n}, \mathrm{l}, \mathrm{m}$). Do not account for any relativistic or other corrections. (1 point)
A7: Spin 1/2 The z-component of a spin one half prepared in state was measured and was found to be $\hbar / 2$.
(a) Afterwards the the x-component of the wave-function was measured. What were the possible measurement outcomes and with what probability? (0.5 points)
(b) Now the z-component is measured again. What were the possible measurement outcomes and with what probability? (0.5 points) The spin operators are defined the following way: $S_{i}=\frac{\hbar}{2} \sigma_{i}$, where

$$
\begin{aligned}
& \sigma_{1}=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

(c) What would have been the outcome without the first measurement? (0.5 points)

