Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide

L. Kind1, S. Stevanovic1, S. Wuttig1, S. Wimberger1, J. Hofer1, B. Müller2, and U. Pieles1

Abstract
Caries is the most common disease in the world. Great efforts have been undertaken for prevention and to identify a regenerative treatment solution for dental caries. Self-assembling β-sheet forming peptides have previously shown to form 3-dimensional fiber networks supporting tissue regeneration. In particular, the self-assembling peptide P11-4 has shown potential in the treatment and prevention of dental caries. It has previously been shown that application of monomeric P11-4 solution to early carious lesions can increase net mineral gain by forming de novo hydroxyapatite crystals. The hypothesis for the mode of action was that monomeric self-assembling peptide P11-4 diffuses into the subsurface lesion body and assembles therein into higher order fibrils, facilitating mineralization of the subsurface volume by mimicking the natural biomineralization of the tooth enamel, and it remains within the lesion body as a scaffold built-in by the newly formed hydroxyapatite. The aim of the present study was to investigate the mechanism of action of the self-assembling peptide P11-4 supporting mineralization of carious enamel. By various analytical methods, it could be shown that the self-assembling peptide P11-4 diffuses into the subsurface lesion, assembles into higher formed aggregates throughout the whole volume of the lesion, and supports nucleation of de novo hydroxyapatite nanocrystals and consequently results in increased mineral density within the subsurface carious lesion. The results showed that the application of self-assembling peptide P11-4 can facilitate the subsurface regeneration of the enamel lesion by supporting de novo mineralization in a similar mode of action as has been shown for the natural formation of dental enamel.

Keywords: enamel biomineralization/formation, micro–computed tomography, regeneration, scanning electron microscopy (SEM), biomaterial(s), dentistry

Introduction
Caries
Caries is the most common disease worldwide (Petersen 2003; Kassebaum et al. 2015). It is caused by certain oral bacteria metabolizing carbohydrates into organic acids, consequently dissolving minerals making up enamel and dentin. Unlike dentine, enamel caries starts by subsurface demineralization, leaving a porous mineral surface covering the lesion body. After demineralization of approximately 30%, the mineralized surface collapses and breaks irreversibly (Bröchner et al. 2010; Bertassoni et al. 2011).

Demin/Remin Equilibrium
Within the oral cavity, there are alternating periods of demineralization caused by bacteria acids and remineralization facilitated by saliva (Hara and Zero 2010). During the demineralization process, calcium phosphate minerals, making up most of the enamel structure, is dissolved due to acidic pH and results in pores between crystallites. During remineralization, calcium phosphate supersaturated saliva redepots minerals either on existing crystallites or triggers de novo formation of crystallites. This presents the natural regeneration process of the enamel tissue (ten Cate and Arends 1980).

Regeneration Approach
Present preventive approaches for caries, such as fluoride, mainly act by inhibiting demineralization by fluoride incorporation in the crystal lattice, resulting in lower solubility of the enamel (ten Cate 1997). The potential of fluoride to protect the enamel is restricted to the outer ~30 µm of the tooth (Schmidlin et al. 2016). A true regenerative approach, however, needs to aim at regenerating hydroxyapatite crystals within the subsurface

1School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland
2Department of Biomedical Engineering, University of Basel, Biomaterials Science Center (BMC), Allschwil, Switzerland

Corresponding Author:
L. Kind, School of Life Sciences, Department of Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, 4132 Muttenz, Switzerland. Email: lucy.kind@fhnw.ch
carious lesion possibly using the natural remineralization process from saliva.

During odontogenesis, the enamel matrix enables formation of hydroxyapatite crystals to form enamel (Goldberg et al. 1995; Kirkham et al. 2000). However, the enamel matrix is mostly degraded during the final enamel maturation step and therefore is unavailable to support regeneration of larger defects during the tooth lifetime (Brookes et al. 2001). A biomimetic approach (i.e., mimicking the physiological function) would present the possibility to form de novo hydroxyapatite crystals (Hannig and Hannig 2010; Carneiro et al. 2016). Biocompatible small molecules capable of self-assembly diffusing into the subsurface carious lesion may be ideal building blocks for scaffolds guiding the regeneration of enamel tissue (Semino 2008; Li et al. 2011). Using peptide secondary structure motifs provided by amelogenin, itself a self-assembling molecular system, is one option investigated (Ruan and Moradian-Oldak 2015; Carneiro et al. 2016). Another is to use rationally designed small peptides that self-assemble into a 3-dimensional scaffold with surface characteristics mimicking the enamel matrix (Kirkham et al. 2007).

Self-Assembling Peptides

P11-4 is a rationally designed small molecule that undergoes hierarchical self-assembly into fibrillar scaffolds in response to specific environmental triggers (Aggeli et al. 1997; Aggeli, Nyrkova, et al. 2001; Aggeli, Bell, Carrick, et al. 2003; Carrick et al. 2007). The peptide undergoes 1-dimensional self-assembly, forming micrometer-long nanotapes, ribbons, proceeding to the formation of fibrils, and edge-to-edge fibers (Nyrkova et al. 2001; Aggeli, Nyrkova, et al. 2000). This assembly process has been well characterized and is principally driven by intermolecular H-bonding arising from the peptide backbone, together with additional interactions between specific sidechains (Aggeli, Fytas, et al. 2001; Kayser et al. 2004). The design criteria for the peptides enabling the self-assembly are well understood and led to the development of a class of self-assembling peptides (Davies et al. 2009) with a number of candidates from the class showing potential in hard and soft tissue regeneration (Firth et al. 2006; Maude et al. 2013).

Self-Assembling Peptide P11-4 as a Mimic for Enamel Matrix

As with any higher order molecular structure, the resulting surface of the 3-dimensional structure determines chemical and physical properties. P11-4 assembled into fibers presents clusters of negative charges made up of 4 Glu-residues on its surface, presenting a potential Ca^{2+}-binding site. Molecular dynamics simulations have shown that those binding sites are approximately 9.4 Å apart—a distance found for the columnar Ca^{2+}-ions in the hydroxyapatite crystal (Thomson et al. 2014). Therefore, P11-4 fibers present a suitable surface that could mimic the biological macromolecules found in mammalian skeleton, where (predominantly anionic) matrix proteins are known to control the deposition and growth of hydroxyapatite crystals (Kirkham et al. 2002; Kirkham et al. 2007; Brunton et al. 2013).

P11-4 Fibers to Support Remineralization

P11-4 fibers have shown to support hydroxyapatite formation on its surface and the remineralization of early carious lesions in an in vitro pH-cycling model (Kirkham et al. 2007). In addition, in vitro remineralization tests have shown surface remineralization with formation of needle-shaped crystals (Takahashi et al. 2016), decrease of laser-fluorescence signal characteristic of early carious lesions (Jablonski-Momeni and Heinzel-Gutenbrunner 2014), and increased micro-hardness after remineralization of subsurface lesions (Schmidlin et al. 2016).

Furthermore, P11-4 incorporated into a clinical product has shown encouraging results in early clinical trials improving the visual appearance of the carious lesions and showing increased opacity on X-rays after treatment of proximal caries (Brunton et al. 2013; Schlee et al. 2014).

This study investigates the proposed mechanism of action of the self-assembling peptide P11-4 and the resulting fibers in promoting biomimetic regeneration or remineralization of early carious lesions. The following proposed mechanism of action is investigated in the present work: diffusion of monomers or small aggregates into the subsurface lesion, self-assembly into fibers or generally higher order aggregates within the carious lesion, and support of de novo crystallization of hydroxyapatite and resulting in remineralization of the lesion.

Materials and Methods

All chemicals, unless otherwise indicated, were purchased from Sigma-Aldrich. All buffer solutions were sterile filtered. Peptides were reconstituted in 20 mM Tris(hydroxymethyl)aminomethan buffer (pH 8.4) resulting in a peptide concentration of 6.3 mM, but samples for Fourier transform infrared spectroscopy (FTIR) measurements were reconstituted in deuterium oxide (D₂O).

Creation of Artificial Carious Lesions in Human Enamel, Application of Self-Assembling Peptide P11-4, and Remineralization Process

Creation of artificial lesions was performed as described by Lo et al. (2010): to define the position of the demineralized subsurface area (i.e., artificial carious lesion or white spot), the tooth was covered with colorless nail polish leaving a window of approximately 4 × 4 mm. The tooth was placed in demineralization buffer (2.2 mM CaCl₂, 2.2 mM NaH₂PO₄, 50 mM acetic acid; pH adjusted with 1 M KOH to 4.4) for 3 d at 37°C. The resulting subsurface lesions were pretreated with 10 μL of 2% NaClO (incubation for 1 min), rinsed, and air-dried at room temperature. Placebo-treated samples underwent identical pretreatment.
Application. In total, 10 µL (6.3 mM) peptide solution (P11-4, P11-4/14C-P11-4, P11-4/ATTO647-P11-4, or placebo [identical formulation without peptide]; Table) was applied, self-assembly was induced by 1 µL 35% H3PO4, incubated for 20 min, and placed in remineralization solution. Specimen samples with P11-4 as well as the respective references were taken from the same tooth to avoid variability in results.

Remineralization. The samples were placed in remineralization buffer containing 2 mM Ca(NO3)2, 1.2 mM KH2PO4, and 60 mM Tris/HCl (pH adjusted to 7.4 with 1 M KOH) for 14 d by changing buffer every second day. A schematic drawing showing the proposed mechanism of action for regeneration of enamel using P11-4 self-assembling peptides is presented in Figure 2 in Brunton et al. (2013).

FTIR

A P11-4 solution in D2O was prepared. The sample was measured before and after acidification with deuterium chloride (DCl) using a Varian 670 FTIR Spectrometer with Golden Gate Diamond Attenuated Total Reflection (DATR) and a mercury-cadmium-telluride (MCT) detector (128 scans, resolution of 4 cm⁻¹).

Transmission electron microscopy reconstituted P11-4 samples were diluted with water to a peptide concentration of 10.5 µM and applied to a carbon-coated copper grid (200 mesh). The grids were stained with uranyl acetate solution (2% w/v in water) for 40 s and washed twice with water. Examination was done with EM 900 (Zeiss) and a MegaView-III Camera (ESIS GmbH) at an accelerating voltage of 50 kV.

Congo Red Staining

After application of P11-4 the enamel specimens were either washed in remineralization buffer for 1 h or without this washing step. The specimens were then incubated for 1 h in 0.14 M Congo red solution (0.15 M NaCl and 5 mM KH2PO4, adjusted to pH 7.4 with NaOH) (Klunk et al. 1989) and washed in remineralization buffer. Analysis was performed with a light microscope (Olympus SZX12, camera: UC30).

Matrix-Assisted Laser Desorption/Ionization with Time-of-Flight Analysis

Enamel specimens treated with P11-4 were drilled out with a hand driller on a cavity-glass plate filled with 200 µL distilled water. The drill dust was collected by addition of 200 µL distilled water, and the samples were purified with Cleanup C18 Pipette Tips (Agilent Technologies). The pipette tips were rinsed 2 × 10 µL with 50 wt% acetonitrile in H2O and rinsed.
2× with 10 µL 0.1 M triethylammonium acetate in H₂O + 1% 1 M NH₄OH, and then the sample was pipetted 10 × 10 µL and washed with 3 × 0.1% trifluoroacidic acid (TFA) in H₂O. Finally, the sample was eluted with 10 µL 50% acetonitrile in H₂O. Then, 1.5 µL of the matrix (20 mg/mL 3,5-dimethoxy-4-hydroxycinnamon acid in H₂O/acetonitrile [1:1] + 0.1% TFA) and 1.5 µL of the sample solution were applied on the sample holder (MTP384 polished steel plate; Bruker), and 2 µL of the calibration standard (protein calibration standard, mass range: ~1,000–3,500 Da; Bruker) was pipetted onto a separate spot. Mass spectra were acquired over a mass/charge (m/z) ratio of 520 to 3,200 using Ultraflex TOF/TOF (Bruker). The mass spectrometer is equipped with a nitrogen (N₂) laser and operates at a wavelength of 337 nm with laser power of 22% (50 laser shots over 5 sides on each sample). Measurements and analysis were performed with FlexControl (Bruker, version 2.4) and FlexAnalysis (Bruker, version 2.4).

Radioactive and Fluorescence Experiments

For radioactive experiments, ¹⁴C-P₁₁₋₄ (6.3 mM) was mixed with P₁₁₋₄ (6.3 mM) (Table) to obtain an overall radioactivity of 10,000 Bq and applied to enamel specimens following acidification and direct placement in remineralization buffer for 14 d. The peptide in the remineralization solution (i.e., not attached to the enamel specimen) was detected by the scintillation counter (Tri-Cab B2910TR; PerkinElmer).

The fluorescence-labeled peptide samples were prepared by mixing ATTO 647-P₁₁₋₄ (6.3 mM) and P₁₁₋₄ (6.3 mM) (Table) at the ratio of 1:20 and applied on the lesion. Samples were placed in an ibidi-slide in dest. water and analyzed by a confocal laser microscope (Olympus IX81). The recorded stack of four 2-dimensional images each projected the lesion volume of 51.4 µm thickness, giving a total assessment depth of 205 µm (objective: UPLSAPO 20×/NA 0.75; helium-neon gas laser; excitation: 633 nm and emission: 668 nm). Images were analyzed by Olympus software (FluoView FV1000).

Micro–Computed Tomography

Scans were performed before and after incubation on SkyScan1172 high-resolution micro–computed tomography (µCT) (85 kV and 118 μA; Cu/Al filter [0.5 mm]; exposure: 1470 ms; 360° rotation; voxel dimension: 5 μm). Reconstructions (ring-artifact correction: 10; beam-hardening correction: 86%) were done with NRecon (SkyScan, version 1.6.9.8) and image analysis with CTAn (SkyScan, version 1.13.11.0) and CTVol (SkyScan, version 2.23.0). The lesion volume of the demineralized data set was extracted as a binary mask, which was subsequently applied to the followed reference and sample data set. As a consequence, the remineralization degree can be indicated as a ratio between the number of voxels from the final volume and the binary mask.

Results

Verification of P₁₁₋₄ Self-Assembling Structure

In acidic conditions, self-assembled peptide P₁₁₋₄ forms a nematic gel (Aggeli, Bell, Carrick, et al. 2003), shown in the inverted glass vial (Fig. 1A). This superordinate 3-dimensional network originates in fiber junctions, visible in transmission electron microscopy (TEM) (Fig. 1B, C). FTIR spectra between 1,400 and 1,800 cm⁻¹ show a defined absorption band at 1,644 cm⁻¹ present in the spectra of the monomeric P₁₁₋₄ (pD ~8), whereas the fibrillary form of P₁₁₋₄ (pD <2) shows an absorption band at 1,616 cm⁻¹ (Fig. 1D). Reference placebo sample exhibited no absorption in the area of interest.

Creating Artificial Carious Lesions in Human Enamel Specimens

Artificial subsurface carious lesions were created in human specimens. Characterization of the lesions was carried out by light microscopy (LM) and µCT (Fig. 2A). The subsurface lesions with an area of 4 × 4 mm were visible after 3 d in demineralization buffer and showed a lesion depth of 70 ± 23 µm as determined by µCT (Fig. 2B).
Detection of P\textsubscript{11-4} within an Artificial Caries Lesion

Qualitative Detection of P\textsubscript{11-4}: MALDI-TOF. Matrix-assisted laser desorption/ionization with time-of-flight analysis (MALDI-TOF) spectra of a P\textsubscript{11-4} solution show a peak at 1,596 m/z (Fig. 3A1). Baseline spectra of ground enamel show no peaks above 1,100 m/z (data not shown). Ground enamel originating from the artificial lesion body treated with P\textsubscript{11-4} displays the corresponding peptide mass peak at 1,596 m/z (Fig. 3A2). After 14 d, remineralization the mass peak of 1,596 m/z is still clearly visible (Fig. 3A3).

Depth of Penetration into Artificial Lesions of P\textsubscript{11-4}: Confocal Microscopy. Lesions visualized in confocal microscopy with placebo and unlabeled P\textsubscript{11-4} showed no fluorescence signal (data not shown). The artificial lesions treated with fluorescence-tagged ATTO647-P\textsubscript{11-4} (Fig. 3B1–2) displayed significant fluorescence signal up to the third 2-dimensional projection covering the depth of the enamel specimen from 103 to 154 µm. After remineralization, fluorescence signal was detected up to the second 2-dimensional projection covering the depth of the enamel specimen from 52 to 103 µm (Fig. 3B3).

P\textsubscript{11-4} Self-Assembling within Artificial Lesions: Congo Red Staining. Untreated or placebo-treated artificial lesions yielded negative staining with Congo red. Artificial lesions treated with P\textsubscript{11-4} showed positive staining (Fig. 3C1–3).

Diffusion Behavior of Applied P\textsubscript{11-4}: Radioactive Assay. The scintillation measurements of the daily changed remineralization buffer predicted the amount of P\textsubscript{11-4} remaining within the lesion. At the first measurement after 1 h (0.04 d), 36% ± 8% of the originally applied radioactive-labeled peptide was detected in the buffer. Within 3 d, an additional 33% ± 6% of the radioactive-labeled P\textsubscript{11-4} was detected in the buffer, leaving 31% ± 11% of the peptide within the enamel specimen. No more radioactivity was detected in the buffer until the end of the measurements at day 14.

Examination of Remineralization Process Facilitated by P\textsubscript{11-4} in Artificial Caries Lesions by \textmu CT

\textmu CT images were analyzed and represented (Fig. 4). After 14 d of remineralization, the placebo-treated specimen showed little remineralization (Fig. 4D1–2, 4E1–2). Specimens treated with P\textsubscript{11-4} solution showed significant remineralization (Fig. 4F1–2, 4G1–2).

Discussion

The present research supports the forward-looking objective to manage caries lesions noninvasively by biomimetic remineralization (Cochrane et al. 2010). As previously described, the peptide P\textsubscript{11-4} assembles into a 3-dimensional network under physiological conditions present within carious lesions and is capable of triggering nucleation of de novo hydroxyapatite crystals (Kirkham et al. 2007).

To ensure that the selected formulations of P\textsubscript{11-4} solutions for the performed experiments were suitable, TEM analysis and FTIR were used to observe the self-assembling fiber matrix formation. Generally, the physicochemical properties of self-assembling peptide P\textsubscript{11-4} are in agreement with previously
published results (Aggeli, Bell, Boden, et al. 2003; Carrick et al. 2007).

The available ex vivo model of artificial caries lesions in human enamel specimens provided a near-physiological basis for the mechanistic studies of P11-4 in the remineralization of carious lesions. The artificial carious lesions formed within 3 d were comparable to those described in Lo et al. (2010). Depending on the tooth specimen, the depth (70 ± 23 µm) and the demineralization of the induced lesion were different among teeth, showing the natural variation of enamel.

Main objective of this work was to verify the mechanism of action of the self-assembled peptide. Mass spectrometry has shown that P11-4 diffused into artificial carious lesions, and detectable amounts remained within the lesion body during remineralization. MALDI-TOF data provided qualitative information on the presence of P11-4. Due to mass spectrometry sample preparation in basic pH, the peptide was detected in a monomeric state at 1,596 m/z.

The penetration depth of P11-4 into the subsurface lesions was addressed by confocal microscopy using a mixture of P11-4 and fluorescent-labeled fusion peptide ATTO647-P11-4. By incorporating a short spacer between peptide sequence and the fluorescent marker, the self-assembling ability with unlabeled P11-4 (ratio: 1:20) was given (data not shown) (Fig. 3B1–3). The detected fluorescence signal showed diffusion of P11-4 throughout and beyond the borders of the artificial lesion as defined by µCT. Presumably, this area outside the visible white spot became porous during the demineralization procedure and thus enabled diffusion of monomeric fluorescence-labeled P11-4. After remineralization, the fluorescence signal of presumably fully assembled P11-4 was detected throughout the whole artificial lesion.

Self-assembled fibers of P11-4 could be detected by Congo red staining. It is believed that Congo red binding depends on the secondary conformation of the fibril, consisting predominantly of cross β-pleated sheets. The structure of Congo red suggests that binding could occur through a combination of hydrophobic interactions of benzidine centers, and electrostatic charged terminal groups (Klunk et al. 1989; Frid et al. 2007). Aggeli, Nyrkova, et al. (2001) have shown that P11-4 assembles via antiparallel β-sheets. This is in agreement with negative staining for monomeric peptides and positive staining for P11-4 fibers.

Radioactive-labeled P11-4 was used to quantify the amount of P11-4 originally attached to the enamel specimen and ultimately remaining within the lesion body over time by determining the radioactivity of 14C-P11-4 detected in the remineralization buffer. After 1 h, 36% of the applied P11-4 was detected in the buffer, suggesting that this amount never or only very weakly bound to the enamel specimens, as there was no washing step between the application and the immersion into the buffer.

Figure 4. Projections of the micro–computed tomography images before and after remineralization of untreated and P11-4 treated enamel specimens: (A) 3-dimensional projection of demineralized tooth and (B) 2-dimensional projection of the tooth slide (blue line). The region-of-interest function was used to separate the demineralized area in all 3 dimensions (insert: red highlighted area). (C) Three-dimensional projection of demineralized area separated from sound enamel and air at the outer surface was converted to a binary data set. (D1) Binary image from data set and (E1) 3-dimensional model of untreated demineralized specimen with white spot lesion at baseline (t = 0); red color indicates areas of demineralization. (D2) Binary image from data set and (E2) 3-dimensional model of corresponding specimen treated with placebo and after placement in remineralization solution; blue color indicates areas of still remaining demineralization after 14 d of remineralization. (F1) Binary image from data set and (G1) 3-dimensional model of untreated demineralized specimen with white spot lesion at baseline (t = 0). (F2) Binary image from data set and (G2) 3-dimensional model of corresponding specimen after treatment with P11-4 and after placement in remineralization solution (t = 14 d).
Throughout the following 3 d, an additional 33% of the originally applied peptide was detected in the buffer, indicating that this amount bound weakly to the mineralized surface and might have been detached due to competitive binding with ions from the remineralization buffer or diffused back out of the lesion as a monomer or small aggregate. The remaining 31% of the applied peptide stayed with the enamel specimen throughout the course of the 14-d detection, as no more radioactivity was recorded in the buffer thereafter. This suggests that 31% of the applied P11-4 formed the scaffold within the lesion. Intriguingly, the concentration of P11-4 within the 1-mm³ lesion was approximately 2.5× higher than the originally applied peptide concentration (25 mg/mL vs. 10 mg/mL), implying that the self-assembly of the peptide is similar to a precipitation reaction removing the monomers from the solution and driving the diffusion reaction of the peptide into the lesion.

The authors are fully aware that the amount of the peptide self-assembling into fibers and remaining inside the lesion may vary among natural lesions, which differ in size, depth, and shape from the artificial lesions used in this study. Nevertheless, it is worthwhile to further investigate whether the application of P11-4 monomers onto a carious lesion causes a higher concentration of P11-4 within the lesion and what consequences this might have on the importance of original peptide concentration of monomeric P11-4 applied in the treatment.

Nondestructive µCT imaging was chosen to monitor remineralization within the artificial carious lesion. As calculated from and visualized by µCT imaging (Fig. 4), specimens remineralized in the presence of P11-4 had an increase in mineralization of 68% within 14 d, in agreement with previously published data (Davies et al. 2015; Deyhle et al. 2015). In contrast, the spontaneous remineralization of the placebo reference showed a mineral gain of 20%, strongly suggesting that P11-4 enabled a significantly higher degree of remineralization.

The qualitative techniques used in this study established the mechanism of action but were not suitable to characterize the structural arrangement of the mineral within the carious lesion. Earlier in vitro data have indicated that the de novo hydroxyapatite crystals formed around P11-4 fibers are tangentially arranged, forming a fan-type structure. As previous attempts to create prismatic enamel in vitro were futile, the observed mineralization triggered by P11-4 fibers within the subsurface lesion may present a significant step toward regeneration of enamel.

Conclusion

The presented experiments support the proposed mechanism of action for self-assembling peptide P11-4 in regeneration of enamel tissue. Furthermore, it could be shown that P11-4 fibers form throughout the lesion body, potentially enabling regeneration of deeper subsurface lesions.

Author Contributions

L. Kind, contributed to conception, design, and data acquisition, drafted and critically revised the manuscript; S. Stevanovic, S. Wittig, S. Wimberger, J. Hofer, contributed to data acquisition, analysis, and interpretation, critically revised the manuscript; B. Müller, contributed to conception, critically revised the manuscript; U. Pieles, contributed to conception and design, critically revised the manuscript. All authors gave final approval and agree to be accountable for all aspects of the work.

Acknowledgments

The authors have received financial and administrative support from the Swiss Nanoscience Institute and the Swiss National Science Foundation (SNSF, No. 144617) within the Nanocure project. In addition, the authors thank Hartmann Analytic GmbH (Germany) for the kind support of radioactive-labeled peptide and credentis ag (Switzerland) for supply of the nonlabeled peptide. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

References

