A1: Wavefunctions

We study the single-particle wavefunction called Loretzian

$$
\psi(x)=\frac{N}{\left(x-x_{0}\right)^{2}+a^{2}}
$$

with $x_{0}, a \in \mathbb{R}$.
(a) Find the value of N from the normalization condition.
(b) Calculate the probability for finding the particle in the interval $\left[x_{0}-a, x_{0}+a\right]$.
(c) Guess the average position (including an explanation) $\langle x\rangle=\int_{-\infty}^{\infty} x|\psi(x)|^{2} \mathrm{~d} x$.
(d) Calculate the variance of the position, $\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$.

A2: Ground state of the quantum-mechanical harmonic oscillator

The total energy of a one-dimensional harmonic oscillator is

$$
E(x, p)=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

with x the position, p the momentum, m the mass of the particle, and $\omega=2 \pi f$ the confinement strength, which corresponds to the classical oscillation frequency.
(a) What is the lowest possible classical energy of this oscillator?
(b) The position uncertainty of the harmonic oscillator is $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$. The inversion symmetry of the problem implies that $\langle x\rangle=0$. Find an expression for $\left\langle x^{2}\right\rangle$ as a function of Δx. Repeat this for the momentum: find $\left\langle p^{2}\right\rangle$ as a function of Δp.
(c) The expectation value of the energy is

$$
\langle E\rangle=\frac{\left\langle p^{2}\right\rangle}{2 m}+\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle
$$

Write down the expectation value of the energy as a function of Δx and Δp.
(d) Heisenberg's uncertainty principle states that $\Delta x \Delta p \geq \frac{1}{2} \hbar$. Find the values of Δx and Δp which simultaneously minimize this uncertainty principle (i.e., $\Delta x \Delta p=\frac{1}{2} \hbar$) and minimize the expectation value of the energy. Express the minimum energy in terms of the classical oscillation frequency ω.
(e) Compare this minimum energy to the minimum energy of a classical harmonic oscillator (problem a). What is the meaning of this result?

