A1: Ground state of the hydrogen atom

The total energy (at any given time) of an electron with momentum p at a distance r from a proton (fixed in space) is

$$E(r,p) = \frac{p^2}{2m_{\rm e}} - \frac{e^2}{4\pi\epsilon_0 r},$$

with m_e the electron mass, e the unit of charge and ϵ_0 the vacuum permittivity.

- (a) Estimate the ground state energy by minimizing the Heisenberg uncertainty relationship. To make "an order of magnitude" estimate, write down the average value of the energy assuming $\langle p^2 \rangle = (\Delta p)^2$ and $\langle \frac{1}{r} \rangle = \frac{1}{\Delta r}$, with $\Delta r \Delta p \geq \hbar$. Then find the ground state values Δr_{\min} , Δp_{\min} , and E_{\min} (see also problem sheet 5 for ideas).
- (b) Calculate the speed of an electron, $v_{\min} = \Delta p_{\min}/m_e$, and compare it to the speed of light. Is a non-relativistic theory of the hydrogen atom justified?
- (c) Compare the above results with the old-fashioned atomic model with circular orbits: assuming that the electron moves on a circular orbit of radius Δr_{\min} with velocity v_{\min} , what will be its orbital frequency? Compare this orbital frequency to the frequency $|E_{\min}|/h$.

A2: Time–Frequency uncertainty relation

Given a time-dependent signal

$$f(t) = \begin{cases} 0 & \text{for } t < 0,\\ \sin(\Omega t)e^{-t/\tau} & \text{for } t \ge 0. \end{cases}$$

- (a) Plot this function for $\Omega \tau = 30$. What is the ring-down time of this oscillation, i.e., in what time does the amplitude of the fast oscillation decay to 1/e of the original value?
- (b) Calculate the Fourier transform $\tilde{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$.
- (c) Plot the power spectrum $|\tilde{f}(\omega)|^2$.
- (d) Calculate the spectral pulse width $\Delta \omega$, defined as the "full width at half maximum" (FWHM) of the peak(s) in the power spectrum.
- (e) Calculate $\Delta \omega \Delta t$ and interpret the result in the context of uncertainty relations.