A1: Numerical simulation of the one-dimensional Schrödinger equation

There is a number of programs on the internet for calculating eigenstates and the time evolution of wavefunctions in one-dimensional potentials. Please go to http://www.falstad.com/qm1d/ and play with this applet (you can download the zip file and from https://java.com/en/download/ a Java engine.)

A2: Rectangular potential with one infinite wall

A particle of mass m moves in the one-dimensional potential

$$
V(x)= \begin{cases}\infty & \text { for } x<0 \\ -V_{0} & \text { for } 0 \leq x \leq L \\ 0 & \text { for } x>L\end{cases}
$$

with $V_{0}>0$.
(a) Scale the Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi(x)}{\mathrm{d} x^{2}}+V(x) \psi(x)=E \psi(x)
$$

by substituting the variables $x \mapsto y L, E \mapsto \varepsilon V_{0}, V(x) \mapsto v(y) V_{0}$. Show that this simplifies the Schrödinger equation to the dimensionless form

$$
-\lambda \frac{\mathrm{d}^{2} \psi(y)}{\mathrm{d} y^{2}}+v(y) \psi(y)=\varepsilon \psi(y)
$$

with the dimensionless parameter $\lambda=\frac{\hbar^{2}}{2 m L^{2} V_{0}}$ that contains all specific parameters of the problem. Plot or draw schematically the resulting effective potential $v(y)$.
(b) Find the bound-state eigenenergies and corresponding wavefunctions for different regimes of λ. Note that bound states are characterized by energies $E<0$ and thus $\varepsilon<0$. For what values of λ are there no bound states? Hint: the transcendental equation for the eigenenergies can be solved graphically.
(c) Find the eigenstates of the free particles, characterized by eigenenergies $E \geq 0$. Why are all energy eigenvalues $E>0$ allowed, i.e., why is the energy spectrum continuous instead of discrete?

A3: Bound-state in Dirac-delta potential

Consider a particle of mass m moving in the attractive Dirac δ-potential $V(x)=-\alpha \delta(x)$. What is the probability that a measurement on its momentum (k-vector) yield a value greater than $k_{0}=m \alpha / \hbar^{2}$?
(a) Use the real-space wavefunction $\psi(x)$ derived in the lecture:

$$
\psi(x)=B e^{-\kappa|x|}
$$

Normalize the wavefunction first.
(b) Find-the momentum-space distribution by Fourier transform: You should obtain

$$
\Phi(k)=\sqrt{\frac{2}{\pi}} \frac{\kappa^{3 / 2}}{\kappa^{2}+k^{2}}
$$

(c) Using the momentum-space distribution, calculate the probability. Use a table for the integral!

