A1: Hydrogen Atom

The normalized hydrogen wavefunctions can be written as

$$
\psi_{n l m}(r, \theta, \phi)=\sqrt{\left(\frac{2}{n a}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}} e^{-r / n a}\left(\frac{2 r}{n a}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n a}\right) Y_{l}^{m}(\theta, \phi)
$$

where $a=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}}$ and $L_{n}^{\alpha}(x)$ and $Y_{l}^{m}(\theta, \phi)$ are:

$$
L_{n}^{\alpha}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

and

$$
Y_{l}^{m}(\theta, \phi)=\frac{1}{2 \pi} N_{l m} P_{l m}(\cos (\theta)) e^{i m \phi}
$$

where

$$
\begin{gathered}
N_{l m}=\sqrt{\frac{2 l+1}{2} \frac{(l-|m|)!}{(l+|m|)!}} \\
P_{l m}(x)=\left(1-x^{2}\right)^{|m| / 2}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{|m|} P_{l}(x) \\
P_{l}(x)=\frac{1}{2^{l}} \sum_{k=0}^{[l / 2]}(-1)^{k} \frac{(2 l-2 k)!}{k!(l-k)!(l-2 k)!} x^{l-2 k}
\end{gathered}
$$

and sign "[]" marks the integer part of the number (floor).
(a) Find explicit expressions for ψ_{210} and ψ_{211}.

For the following problems, consider an electron in the superposition state

$$
\psi=\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}\left(a \psi_{210}+b \psi_{211}+c \psi_{32-1}\right)
$$

at $t=0$, for which a, b, and c can be assumed as real numbers.
(b) What results are possible for a measurement of the total energy? Give the probabilities of obtaining each result.

A2: Hydrogen Ground State

Consider the ground state wavefunction of the hydrogen atom.
(a) What is the most probable measurement result for the distance r between the electron and the nucleus? Hint: the answer is not 0 ! Why?
(b) What is the expectation value of r ?

A3: Angular Momentum

The angular momentum operators \hat{L}_{x}, \hat{L}_{y}, and \hat{L}_{z} in Cartesian coordinates are

$$
\hat{L}_{x}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right) \quad \hat{L}_{y}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right) \quad \hat{L}_{z}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
$$

Consider the state

$$
\psi(x, y, z)=A \mathrm{e}^{-\alpha\left(x^{2}+y^{2}+z^{2}\right)}\left(\frac{x+i y}{\sqrt{x^{2}+y^{2}}}\right)^{m}
$$

where $\alpha>0$ and m is an integer.
(a) Determine the normalization constant A. Hint: $\int_{-\infty}^{\infty} d x \mathrm{e}^{-a x^{2}}=\sqrt{\frac{\pi}{a}}$ for $a>0$ (Gaussian integral).
(b) Calculate the expectation value of \hat{L}_{z}.
(c) Is the state ψ an eigenstate of \hat{L}_{z} ? If so, what is its eigenvalue?

A4: Angular Momentum Consider the following Hamiltonian in three-dimensions with a potential that depends only on the distance from the origin $r=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\hat{V}(r)
$$

where $\hat{p}^{2}=\hat{p}_{x}^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}=-\hbar^{2} \triangle$.
(a) Show in coordinate representation that the angular momentum operator in the z-direction

$$
\hat{L}_{z}=x p_{y}-y p_{x}=-\imath \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)
$$

commutes with \hat{p}^{2} (meaning that $\left[\hat{p}^{2}, \hat{L}_{z}\right]=0$).

