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A1: Hydrogen Atom
The normalized hydrogen wavefunctions can be written as
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and sign ”[ ]” marks the integer part of the number (floor).

(a) Find explicit expressions for ψ210 and ψ211.

For the following problems, consider an electron in the superposition state

ψ =
1√

a2 + b2 + c2
(aψ210 + b ψ211 + c ψ32−1),

at t = 0, for which a, b, and c can be assumed as real numbers.

(b) What results are possible for a measurement of the total energy? Give the probabilities of obtaining each result.

A2: Hydrogen Ground State
Consider the ground state wavefunction of the hydrogen atom.

(a) What is the most probable measurement result for the distance r between the electron and the nucleus? Hint:
the answer is not 0! Why?

(b) What is the expectation value of r?

A3: Angular Momentum
The angular momentum operators L̂x, L̂y, and L̂z in Cartesian coordinates are
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Consider the state

ψ(x, y, z) = A e−α(x2+y2+z2)

(
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where α > 0 and m is an integer.

(a) Determine the normalization constant A. Hint:
∫∞
−∞ dx e−ax2

=
√

π
a for a > 0 (Gaussian integral).

(b) Calculate the expectation value of L̂z.

(c) Is the state ψ an eigenstate of L̂z? If so, what is its eigenvalue?
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A4: Angular Momentum Consider the following Hamiltonian in three-dimensions with a potential that depends only
on the distance from the origin r =

√
x2 + y2 + z2

Ĥ =
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+ V̂ (r),

where p̂2 = p̂2x + p̂2y + p̂2z = −~2△.

(a) Show in coordinate representation that the angular momentum operator in the z-direction

L̂z = xpy − ypx = −ı~
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commutes with p̂2 (meaning that [p̂2, L̂z] = 0).


