A1: Classical Larmor precession

We use the classical expression for the evolution of a magnetic moment in a static magnetic field to understand an electron with a magnetic moment $\vec{\mu}$ in the presence of a magnetic field \vec{B} . In spherical coordinates $\vec{\mu}$ and \vec{B} are given as

$$\vec{\mu} = (\mu, \theta, \varphi)$$

 $\vec{B} = (B, 0, 0)$

- (a) What is the classical expression for the torque exerted by \vec{B} on $\vec{\mu}$?
- (b) Calculate the time evolution of the angular momentum $\vec{L} = -2m\vec{\mu}/g_{\rm L}e$, with *m* the electron mass, -e it's charge, and $g_{\rm L}$ is the Landé-factor.
- (c) Show that the trajectory of \vec{L} is a circle with constant θ and L and find the rotation frequency. Draw schematically the trajectory in a unit sphere.

A2: Quantum Larmor precession

Imagine a particle of spin 1/2 in a uniform magnetic field pointing in the z-direction. The Hamiltonian has the following form:

$$\hat{H} = -\gamma \vec{B}\vec{S}.$$

The spin operators are defined the following way: $\hat{S}_i = \frac{\hbar}{2}\sigma_i$, where

$$\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(a) The spin wavefunction is given at t = 0 by $\chi(t = 0) = \binom{a}{b}$. Calculate the wavefunction $\chi(t)$ at time t.

(b) Calculate the time dependent expectation value \hat{S}_x .