A1: Classical Larmor precession

We use the classical expression for the evolution of a magnetic moment in a static magnetic field to understand an electron with a magnetic moment $\vec{\mu}$ in the presence of a magnetic field \vec{B}. In spherical coordinates $\vec{\mu}$ and \vec{B} are given as

$$
\begin{aligned}
\vec{\mu} & =(\mu, \theta, \varphi) \\
\vec{B} & =(B, 0,0)
\end{aligned}
$$

(a) What is the classical expression for the torque exerted by \vec{B} on $\vec{\mu}$?
(b) Calculate the time evolution of the angular momentum $\vec{L}=-2 m \vec{\mu} / g_{\mathrm{L}} e$, with m the electron mass, $-e$ it's charge, and g_{L} is the Landé-factor.
(c) Show that the trajectory of \vec{L} is a circle with constant θ and L and find the rotation frequency. Draw schematically the trajectory in a unit sphere.

A2: Quantum Larmor precession

Imagine a particle of spin $1 / 2$ in a uniform magnetic field pointing in the z-direction. The Hamiltonian has the following form:

$$
\hat{H}=-\gamma \vec{B} \vec{S}
$$

The spin operators are defined the following way: $\hat{S}_{i}=\frac{\hbar}{2} \sigma_{i}$, where

$$
\begin{aligned}
& \sigma_{1}=\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

(a) The spin wavefunction is given at $t=0$ by $\chi(t=0)=\binom{a}{b}$. Calculate the wavefunction $\chi(t)$ at time t.
(b) Calculate the time dependent expectation value $\hat{S_{x}}$.

