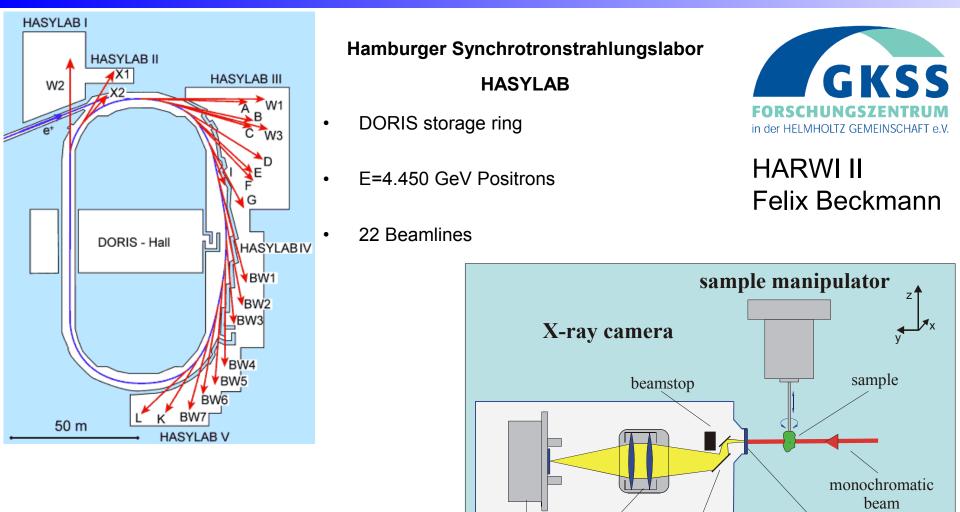


Tomographic imaging using synchrotron light: Benefit for orthopedic research


Frank Witte

BMC, Basel 2007 1

Synchrotron-radiation based computed micro-tomography

lens

optical mirrors

fluorescent screen

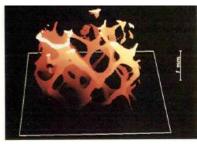
CCD camera

2

The beginning of SRµCT in biology

644

Nuclear Instruments and Methods in Physics Research A246 (1986) 644-648 North-Holland, Amsterdam


BORE

HIGH RESOLUTION TOMOGRAPHY WITH CHEMICAL SPECIFICITY

U. BONSE ²⁾, Q. JOHNSON ¹⁾, M. NICHOLS ³⁾, R. NUSSHARDT ²⁾, S. KRASNICKI ²⁾* and J. KINNEY ¹⁾

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
 Institut für Physik, University of Dortmund, Dortmund, FRG
 Sendia National Laboratory, Linguage CA 04550, USA

3) Sandia National Laboratory, Livermore, CA 94550, USA

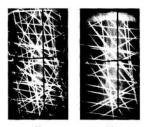
Microcallus (www.roche.com)

ELSEVIER SCIENCE IRELAND

Bone and Mineral 25 (1994) 25-38

3D computed X-ray tomography of human cancellous bone at 8 μ m spatial and 10⁻⁴ energy resolution

Ulrich Bonse^{*^a}, Frank Busch^a, Olaf Günnewig^a, Felix Beckmann^a, Reinhard Pahl^a, Günter Delling^b, Michael Hahn^b, Walter Graeff^c


^aLehrstuhl für Experimentelle Physik 1. Universität Dortmund, Otto-Hahn-Str. 4. D-44221 Dortmund, Germany

^bInstitut f
ür Pathologie, Universit
äts-Krankenhaus Eppendorf, Martinistr. 52, 20240 Hamburg. Germany ^cHamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronensynchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

(Received 19 August 1993; revision received 28 October 1993; accepted 10 November 1993)

Prof. Ulrich Bonse

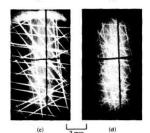
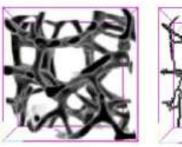


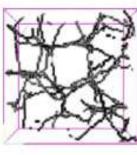
Fig. 7. (a) Web structured gaps in Cu + Ni Layers imaged at 23 eV above Cu K-edge, (b) 18 eV below Cu K-edge, (c) 26 eV above Ni K-edge, and (d) 22 eV below Ni K-edge.

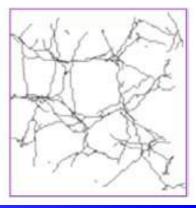
SRµCT-based FEM

Journal of Biomechanics I (IIII)

JOURNAL OF BIOMECHANICS

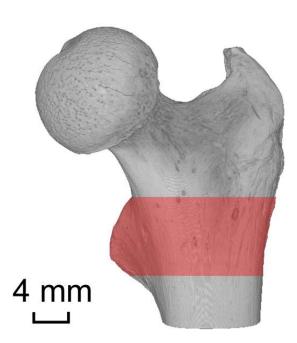

www.elsevier.com/locate/jbiomech www.JBiomech.com

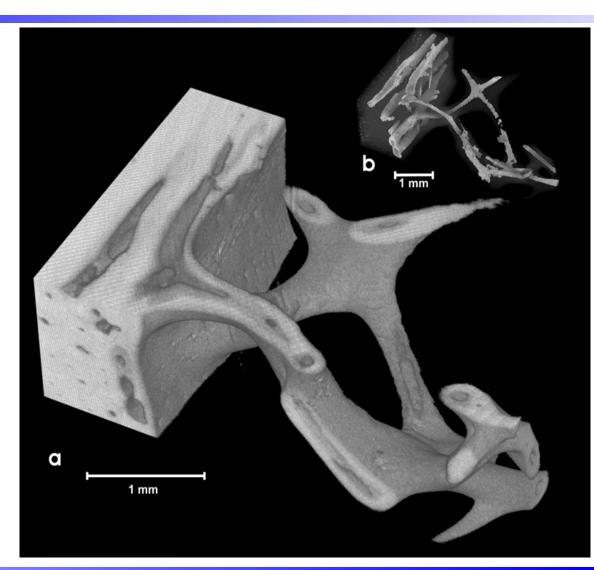

Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography


H. Follet^{a,*}, F. Peyrin^{b,c}, E. Vidal-Salle^a, A. Bonnassie^b, C. Rumelhart^a, P.J. Meunier^d

^aLaboratoire de Mécanique des Contacts et des Solides (LaMCoS) UMR CNRS 5514, INSA, Bât Coulomb, Lyon, France ^bCREATIS, UMR CNRS 5515, Bât. Blaise Pascal, INSA, Lyon, France ^cESRF, BP 220, 38043 Grenoble Cedex, France ^dLaboratoire d'Histodynamique Osseuse, INSERM U403, Lyon, France

Accepted 24 October 2006





SRµCT for structural biology

Scherf H., Fischer J., Beckmann F., Witte F. SPIE 5535, 2004

5

SRµCT for soft tissue imaging

Phys. Med. Biol. 43 (1998) 2911-2923. Printed in the UK

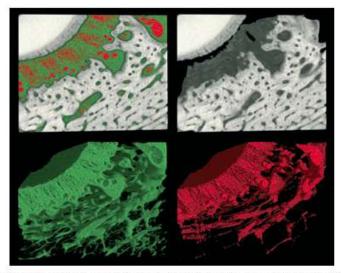
PII: S0031-9155(98)93345-0

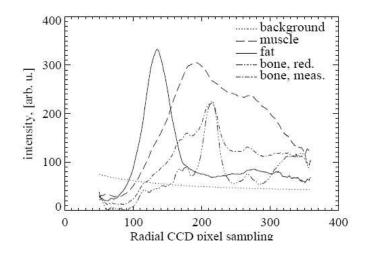
Orthod Craniofacial Res 9, 2006/199-205

ORIGINAL ARTICLE

M Dalstra PM Cattaneo F Beckmann

Synchrotron radiation-based microtomography of alveolar support tissues




Fig. 8. 3D reconstruction of the mineralized and soft tissues in a section of the porcine sample. Note the use of false-coloring to enhance the low-density structures; green for the bone marrow and the fibers of the PDL; red for the blood vessels and interstitial tissue.

Feasibility study of x-ray diffraction computed tomography for medical imaging*

U Kleuker^{††}, P Suortti[†], W Weyrich[§] and P Spanne[†]

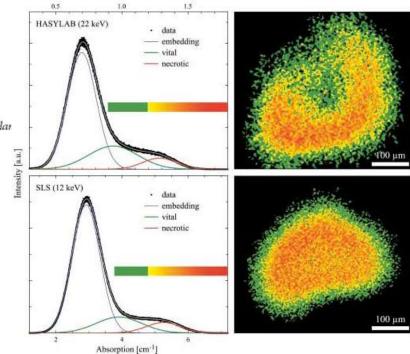
† Medical Imaging Group, European Synchrotron Radiation Facility, PO Box 220, F-38043 Grenoble, France § Faculty of Chemistry, University of Konstanz, Fach M 721, D-78457 Konstanz, Germany

Received 16 April 1998, in final form 27 July 1998

Laboratory for Biomechanic and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School

6

SRµCT in tissue engineering


Microsc. Microanal. 12, 97-105, 2006 DOI: 10.1017/S1431927606060168

Three-Dimensional Characterization of Cell Clusters Using Synchrotron-Radiation-Based Micro-Computed Tomography

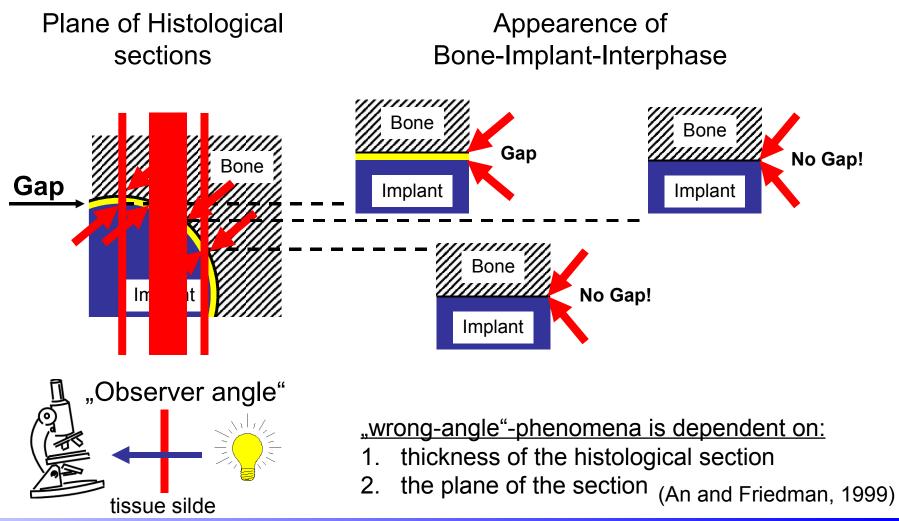
Bert Müller,^{1,*} Marco Riedel,² Philipp J. Thurner^{1,3}

¹Computer Vision Laboratory ETH Zürich, Gloriastrasse 35, CH-8092 Zürich, Switzerland
 ²ProBioGen, Sternwartstrasse 7, D-13086 Berlin, Germany
 ³Swiss Federal Institute for Materials Testing and Research, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

Microscopy and Microanalysis

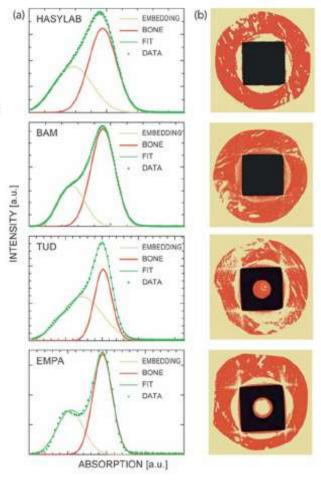
Biomaterial research using SRµCT

- Field of application
 - Structural bone analysis
 - Bone-Implant-Interface
 - Determination of degradation rates
- Mainly used modes
 - SRµCT: attenuation mode
 - SRµCT: element-specific mode


1. Limitation of biomaterial-tissue interface analysis

- "Wrong angle" phenomena
- limitation of cutting-grinding technique

Advantage of SRµCT


European Cells and Materials Vol. 7. 2004 (pages 42-51)

ISSN 1473-2262

COMPARISON OF MICROFOCUS- AND SYNCHROTRON X-RAY TOMOGRAPHY FOR THE ANALYSIS OF OSTEOINTEGRATION AROUND TI6AL4V-IMPLANTS

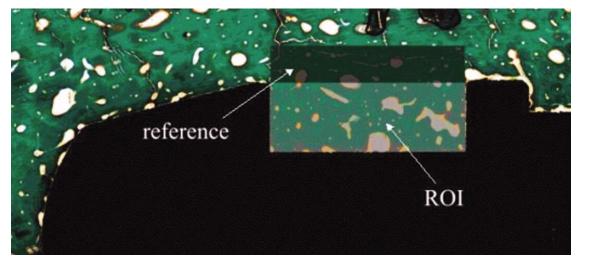
R. Bernhardt¹, D. Scharnweber¹, B. Müller^{2*}, P. Thurner³, H. Schliephake⁴, P. Wyss³, F. Beckmann⁵, J. Goebbels⁶, and H. Worch¹

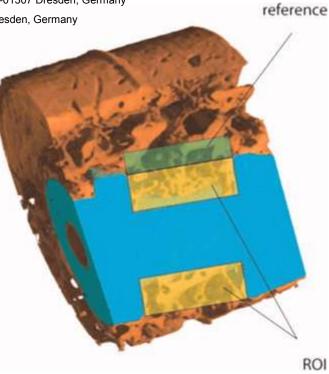
¹Max-Bergmann-Center of Biomaterials, TU Dresden, D-01062 Dresden, Germany, ²Computer Vision Laboratory, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland ³Swiss Federal Laboratories for Materials Testing and Research, CH-8600 Dübendorf, Switzerland ⁴Department of Cranio-Maxillofacial Surgery, Georgia-Augusta-University, D-37075 Göttingen, Germany ⁵GKSS-Research Center, D-21502 Geesthacht, Germany ⁶Federal Institute for Materials Research and Testing, D-12200 Berlin, Germany

SRµCT Interface Analysis

Influence of extracellular matrix coatings on implant stability and osseointegration: An animal study

Bernd Stadlinger 1 *, Eckart Pilling 1, Matthias Huhle 1, Ronald Mai 1, Susanne Bierbaum 2, Ricardo Bernhardt 2, Dieter Scharnweber 2, Eberhard Kuhlisch 3, Ute Hempel 4, Uwe Eckelt 1

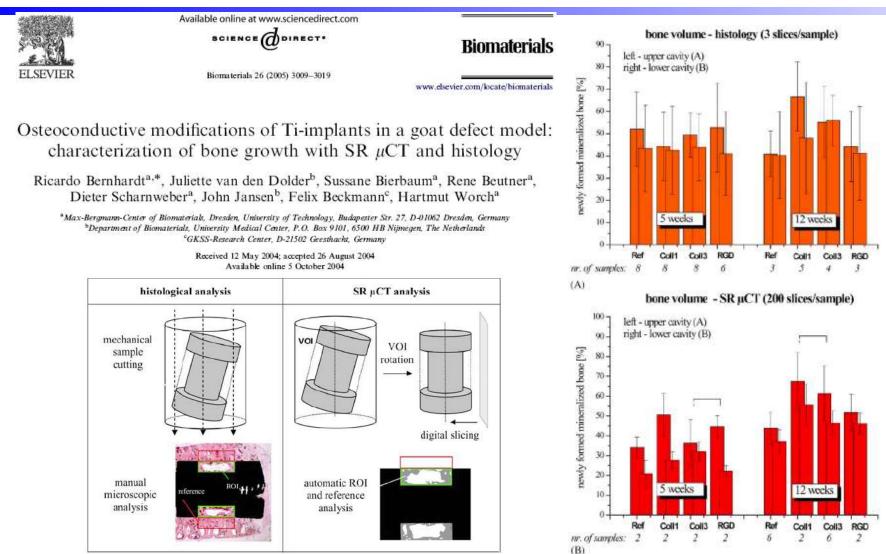

1Faculty of Medicine, Department of Maxillofacial Surgery, University of Technology Dresden, Fetscherstr. 74, D-01307 Dresden, Germany

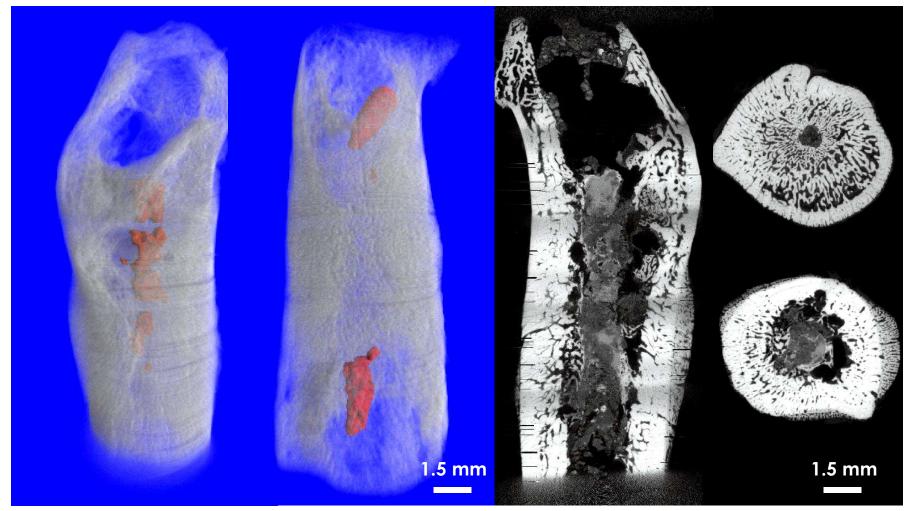

2Max-Bergmann-Center of Biomaterials, University of Technology, Budapester Str. 27, D-01062 Dresden, Germany

3Faculty of Medicine, Institute for Medical Informatics and Biometry, University of Technology Dresden, Fetscherstr. 74, D-01307 Dresden, Germany

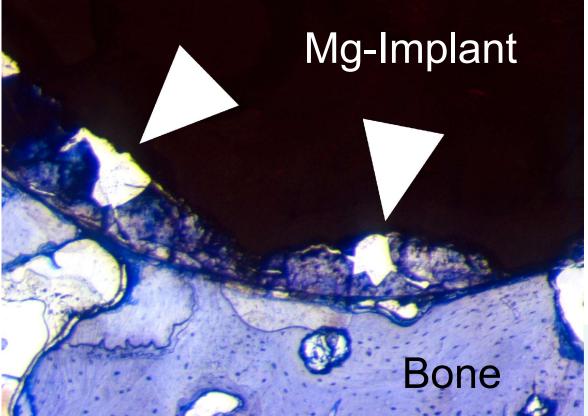
4Faculty of Medicine, Institute of Physiological Chemistry, University of Technology Dresden, Fetscherstr. 74, D-01307 Dresden, Germany email: Bernd Stadlinger (stadlinger@gmx.de)

Journal of Biomedical Materials Research Part B: Applied Biomaterials; Epub 22.Feb.2007




SRµCT Interface Analysis

Biodegradable magnesium alloys


Witte et al., HASYLAB Ann. Reports, 2004

BMC, Basel 2007

Limitation of cutting-grinding technique

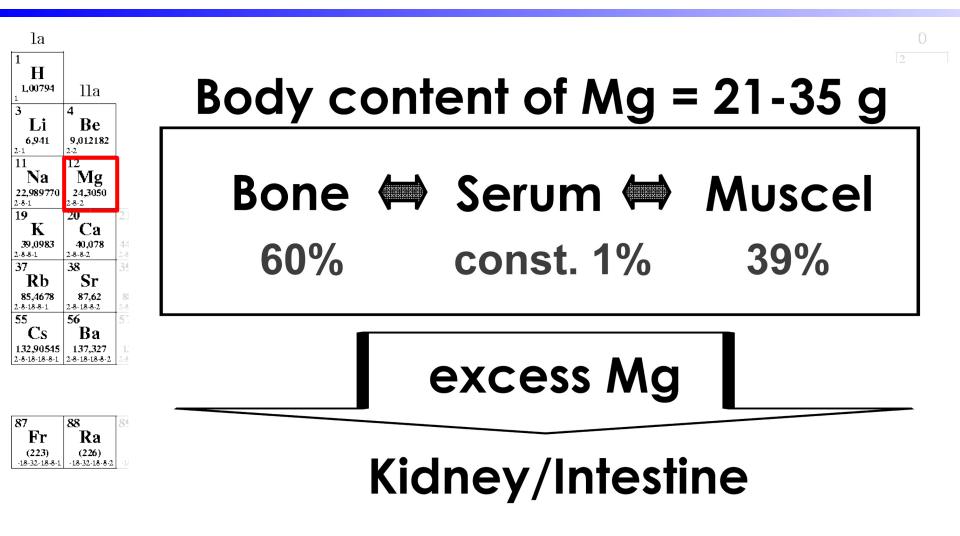
 $Mg + 2 H_2O \rightarrow Mg(OH)_2 + H_2$

 $Mg(OH)_2 + 2CI \rightarrow MgCI_2 + 2OH$

For analysis of in-vivo corrosion of magnesium, microtomography is mandatory.

"Drop-outs" from cutting-grinding technique

Current biomaterials


material	density [g/cm ³]	Young's modulus [GPa]	tensile strength [Mpa]	breaking elongation [%]
surgical steel (X2CrNiMo18164)	8,0	193	585	55
surgical titanium (TiAl6V4)	4,43	100 – 110	930 – 1140	8 – 15
cortical bone	1,7 – 2,0	3 – 30	80 – 150	3 – 4
DL-PLA (DL-polylactide)	1,24	1,9	29	5,0
magnesium AZ91	1,81	45	240	3
magnesium MgCa (0,8 wt% Ca)	1,75	n/a	290 – 300	2-6

Staiger et al., Biomaterials 27 2006

Pathophysiology

Implantation of Magnesium-Rods

In vivo corrosion of four magnesium alloys and the associated bone response

F. Witte^{a,*}, V. Kaese^b, H. Haferkamp^b, E. Switzer^c, A. Meyer-Lindenberg^c, C.J. Wirth^a, H. Windhagen^a

^aDepartment of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Str.1-7, 30625 Hannover, Germany ^bCenter of Biomedical Engineering, University of Hannover, Lise-Meitner-Str. 1, 30823 Garbsen, Germany Small Animal Clinic, School of Veterinary Medicine Hannover, Bischhofsholer Damm 15, 30173 Hannover, Germany

> Received 13 June 2004; accepted 22 September 2004 Available online 2 November 2004

able online at www.sciencedirect.co SCIENCE DIRECT.

Biomaterials 26 (2005) 3557-3563

Magnesium alloy:

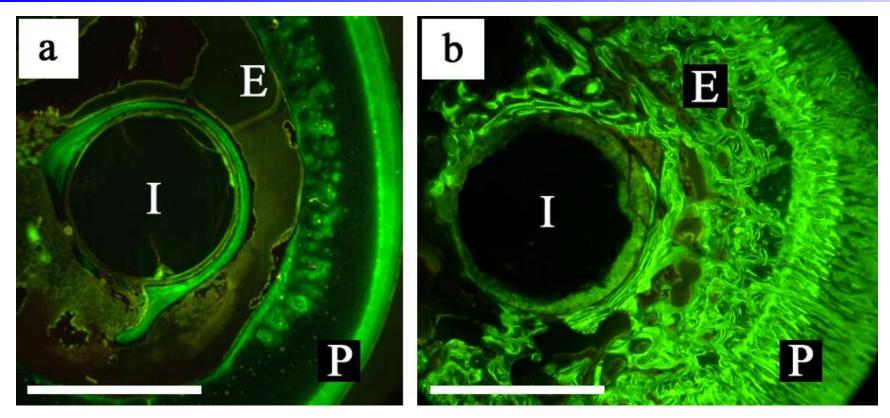
A731 A791D

WF43 LAE442

Control: SR-PI A

Follow-up post-OP:

6 weeks

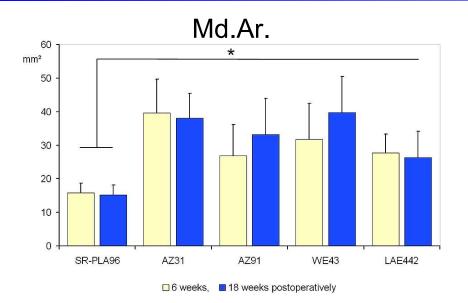

18 weeks

18

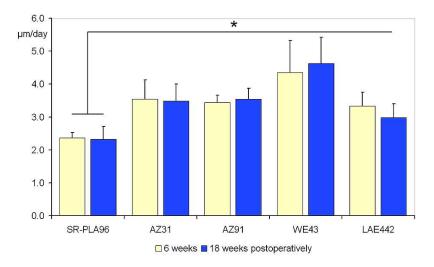
New Bone Formation

SR-PLA96

Magnesium


- I = Implantat residual; E = endostal new bone formation;
- P = periostal new bone formation; Bar = 1.5 mm

Witte et al., Biomaterials 26, 2005



Histomorphometry of Mg-implants

MAR

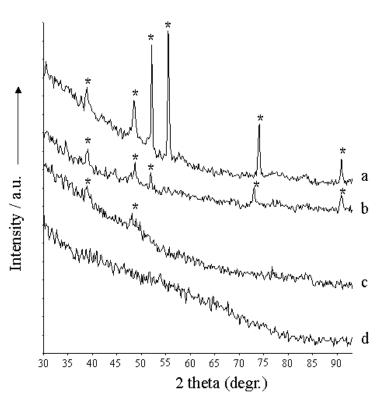
B.Ar./T.Ar

Table 1

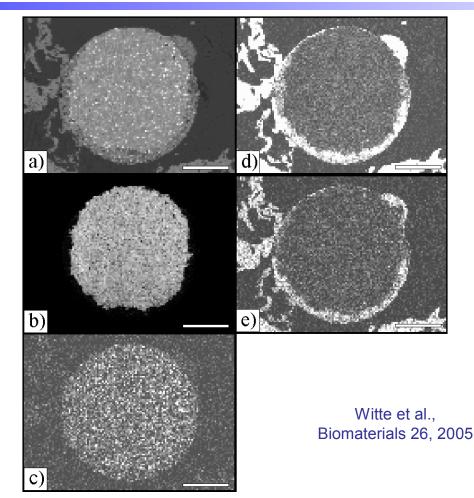
Bone area per total area (B.Ar/T.Ar) of implanted magnesium alloys and degradable polymer (SR-PLA96) in guinea pig femura at 6 and 18 weeks postoperatively

6 weeks p-value	18 weeks p-value
1.000	0.578
0.847	0.806
0.924	0.995
0.646	1.000
0.996	0.730
0.980	0.999
0.909	0.104
0.963	0.828
1.000	0.605
0.738	0.690
	1.000 0.847 0.924 0.646 0.996 0.980 0.909 0.963 1.000

No siginificant differences were found between groups.

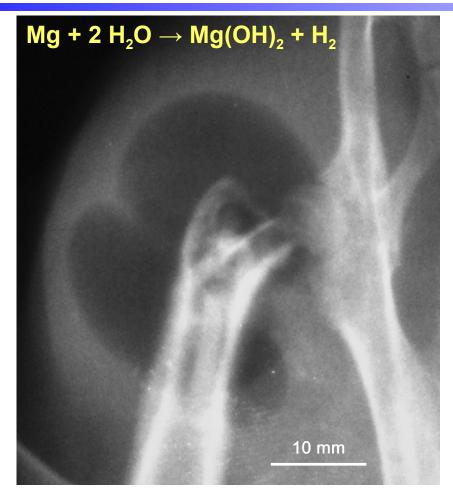

Physiological bone formation is enhanced by magnesium implants.

Witte et al., Biomaterials 26, 2005



Corrosion layer in-vivo

- a) magnesium residualb) corrosion layer
- c) bone
- d) embedding media



a) BSC; b) magnesium; c) neodymium;d) calcium; e) phosphorus

Subcutaneous gas cavities

1 g magnesium >> 1.08 l hydrogen gas

Witte et al., Biomaterials 26, 2005

BMC, Basel 2007 22

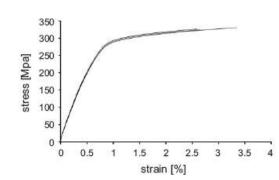
MMC - Novel biodegradable metals

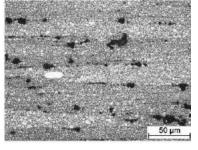
Available online at www.sciencedirect.com

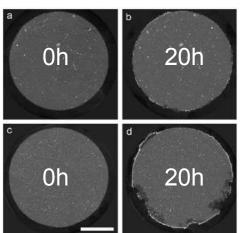
ScienceDirect

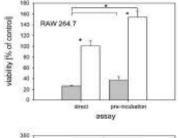
Biomaterials

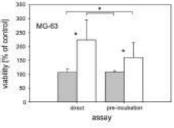
Biomaterials 28 (2007) 2163-2174

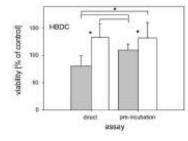

www.elsevier.com/locate/biomaterials

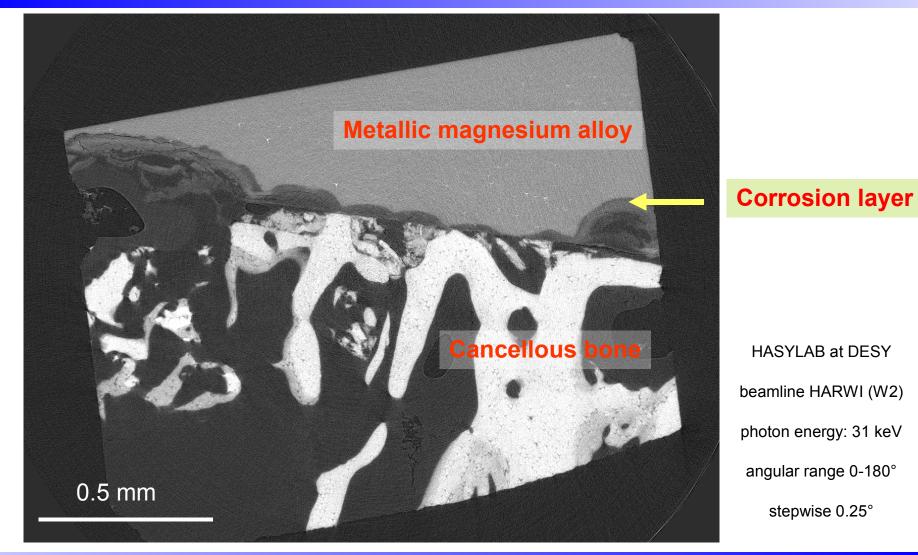

Biodegradable magnesium-hydroxyapatite metal matrix composites


Frank Witte^{a,*}, Frank Feyerabend^b, Petra Maier^b, Jens Fischer^a, Michael Störmer^b, Carsten Blawert^b, Wolfgang Dietzel^b, Norbert Hort^b


^aLaboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Str. 1-7, 30625 Hannover, Germany ^bInstitute of Materials Research, Magnesium Innovation Centre, GKSS Research Centre Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany

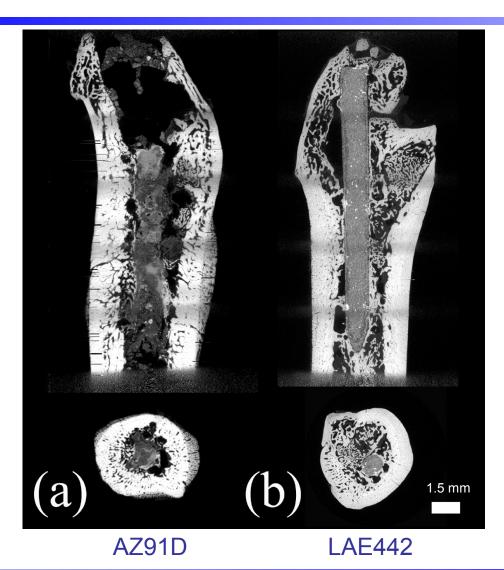

> Received 7 August 2006; accepted 31 December 2006 Available online 5 January 2007





BMC, Basel 2007 23

SRµCT in attenuation mode



BMC, Basel 2007 24

Analysis of the total specimens

HASYLAB at DESY beamline HARWI (W2) photon energy: 31 keV angular range 0-180° stepwise 0.25° voxel edge length: 10 µm stack of 5 datasets

Witte et al. Biomaterials 27, 2006

BMC, Basel 2007

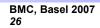
25

In vivo corrosion rate by SRµCT

$$CR = \frac{W}{A \cdot t \cdot \rho}$$
 (Eq. 1

Reference: ASTM G31-72, 2004

$$CR = \frac{\Delta V}{A \cdot t}$$

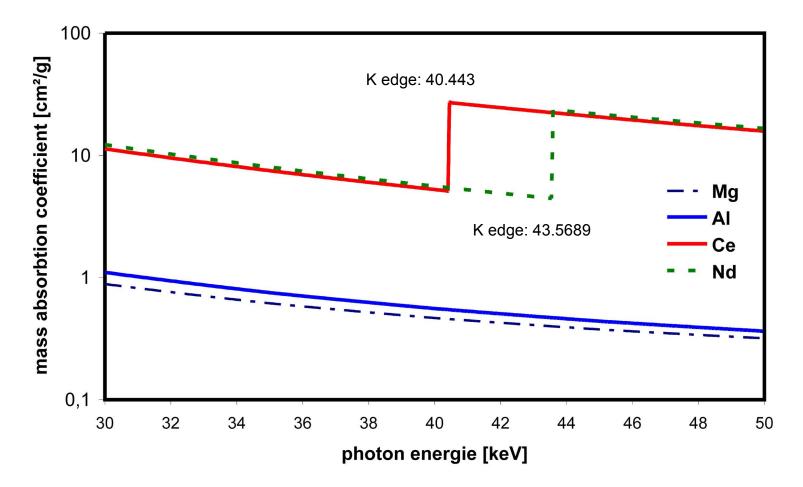

(Eq. 2)

- CR is the corrosion rate
- W is the weight loss
- is the original surface area Α exposed to the corrosive media

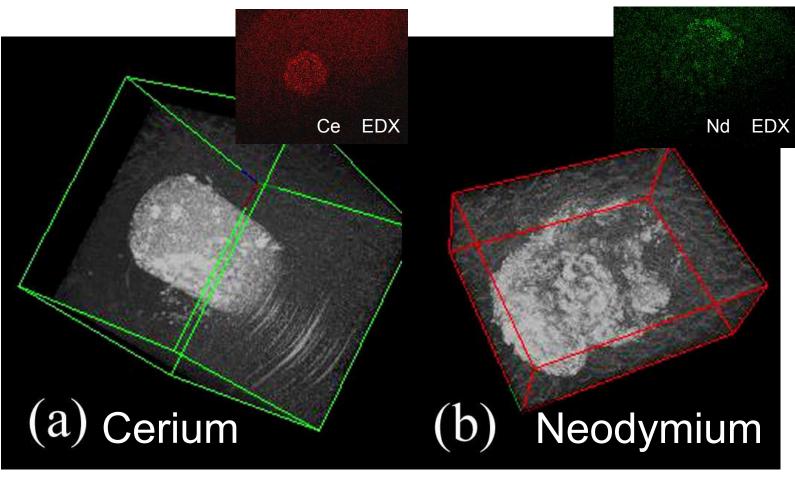
(a)

- is the time of immersion t
- is the standard density ρ

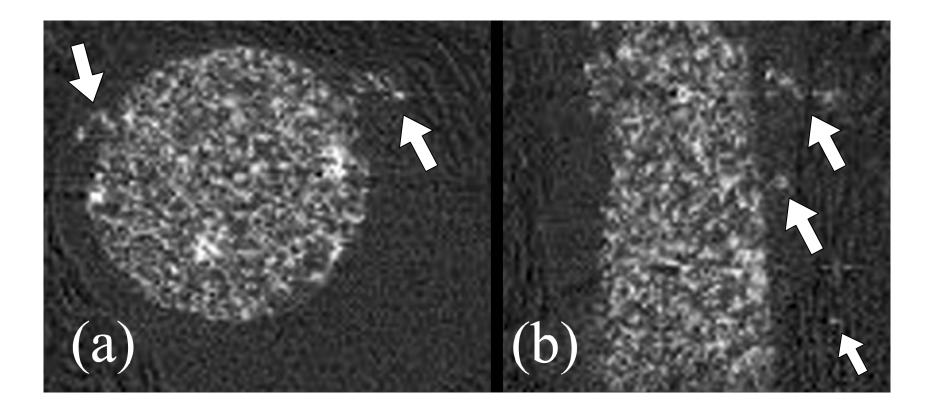
Witte et al., Biomaterials 27, 2006


Laboratory for Biomechanic and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School

(b)

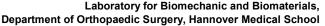

mass absorption coefficient vs. photon energy

Element-specific SRµCT



BMC, Basel 2007 28

Spatial distribution of cerium (LAE442)



SRµCT:

- became a great imaging tool
- has potential for quantitative analysis
- for structural biology and
- for interface analysis of biomaterials.

Thank you very much !!!

Excellent laboratory staff

Heike Ullrich Sophie Müller Elmar Willbold

LQW, University of Dortmund

Jens Nellesen, H-A Crostack

MD-doctorate students

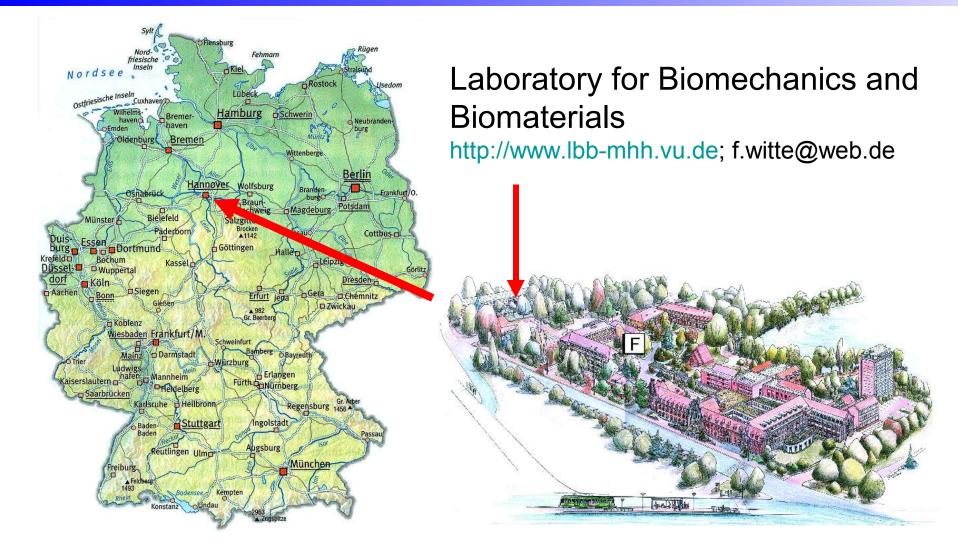
Janin Reifenrath	Bettina Wilhelm
Christiane Palm	Carla Janning
Oliver Palm	Maren Klement
Inken Abeln	Bettina Michael

GKSS Tomography Group at HASYLAB

Felix Beckmann, Jens Fischer, Julia Herzen, Tilman Donath

GKSS Research Center

Frank Feyerabend, Norbert Hort, Hajo Deringa, Petra Meier, Carsten Blawert, Wolfgang Dietzel


Grants:

German Research Society, Colloabarative Research Project, SFB 599 Bundesministerium für Bildung und Forschung, BMBF

Hannover Medical School

