
Diss. ETH No. 17052

Particle Methods for Flow-Structure Interactions

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of

DOCTOR OF SCIENCE

presented by

Simone Elke Hieber

Dipl.-Ing., University of Stuttgart, Stuttgart, Germany

M.Sc., Michigan Technological University, Houghton, MI, USA

born on February 19th, 1976

in Geislingen/Steige, Germany

accepted on the recommendation of

Prof. Dr. Petros Koumoutsakos, examiner

Prof. Dr. Anthony Leonard, co-examiner

Prof. Dr. Jens H. Walther, co-examiner

2007

Abstract

The accurate modeling and simulation of soft biological tissue subject to flow-structure

interactions lie in the core of virtual surgery systems. The challenges of the computational

simulation in virtual surgery are the complex three-dimensional shapes of tissue and the

involved physical phenomena including various interactions with the environment, such

as interactions with body fluids and medical devices. The simulation of these systems

requires the generation of complex structures for discretization. They need to be adap-

tive and accommodate phenomena such as cutting and flow-structure interactions that are

of principal importance for virtual surgery systems. The thesis focuses on the develop-

ment and implementation of novel particle methods that aim to circumvent some of these

difficulties. We distinguish three aspects in the methods developed in here, namely:

1. the development of novel Lagrangian particle level sets for capturing complex, de-

forming surfaces,

2. the development of particle methods based on regularized Smooth Particle Hydro-

dynamics for the simulation of fluids and elastic solids,

3. the development of immersed boundary techniques for the simulation of complex,

deforming solid boundaries in a fluid environment.

The methods are validated on benchmark problems and tested on showcase systems rel-

evant for virtual surgery applications. The development and implementation of a parallel

particle-mesh library allow for large scale simulations of challenging continuum mechan-

ics problems.

Zusammenfassung

Die genaue Modellierung und Simulation von biologischem Weichgewebe kann als die

Kerntechnologie in der virtuellen Chirurgie betrachtet werden. Die Herausforderungen

der rechnergestützten Simulation im Bereich der virtuellen Chirurgie liegen in der Be-

handlung von komplexen dreidimensionalen geometrischen Formen des Gewebes und

vielfältigen physikalischen Gesetzen, die verschiedene Interaktionsmechanismen mit der

Umgebung beinhalten. Die Simulation muss daher adaptiv sein und Phenomäne behan-

deln können, wie das Schneiden von geometrischen Körpern und Interaktionen zwischen

Strukturen und Strömungen (flow-structure interactions). Diese Dissertation konzentriert

sich auf die Entwicklung und Implementierung von Partikelmethoden um diese Syste-

me zu behandeln. Wir unterscheiden dabei drei Hauptaspekte in den dafür entwickelten

Methoden:

1. die Entwicklung der neuartigen Lagrangian Particle Level Set-Methode für die Be-

schreibung der Deformation von komplexen Oberflächen,

2. die Entwicklung von Partikelmethoden für die Simulation von Fluiden and elasti-

schen Materialen basierend auf der Smooth Particle Hydrodynamics-Methode,

3. die Entwicklung einer Immersed Boundary-Methode für die Simulation von defor-

mierenden komplexen Körpern umgeben von Fluiden.

Die entwickelten Methoden werden anhand von Vergleichtests validiert und an Bei-

spielsystemen relevant für die virtuelle Chirugie getestet. Die Simulation von grossen

anspruchsvollen Systemen aus der Kontinuumsmechanik ermöglicht dabei eine neu ent-

wickelte parallele Partikel-Gitter Software-Bibliothek.

vii

TO MY FAMILY

Acknowledgements

I would like to thank all the people who accompanied me during my PhD studies and

contributed to my PhD thesis in many different aspects to make it a great experience.

First of all, I want to thank Petros Koumoutsakos for being my PhD advisor and linking

this project to the NCCR Computer Aided and Image Guided Medical Interventions

(Co-Me). He is a very creative person and accompanied me during my PhD time with

an amazing amount of ideas. He gave me the opportunity to work in a highly dynamic

and stimulating environment. He promoted my participation in the Summer School in

Multiscale Modeling and Simulation and my research visit at the University of Tokyo,

Japan. These activities were very inspiring for me, not only from a scientific point of

view.

I also want to thank my coreferees Anthony Leonhard (Caltech, Pasadena, USA) and

Jens Walther (Technical University of Denmark, Lyngby, Denmark) for their visits at

ETH Zurich leading to many helpful discussions.

I wish to thank my colleagues in the CSE Lab and the CoLab for their friendship, support

and source of inspiration. Especially, I want to acknowledge Ivo Sbalzarini, Jens Walther,

Michael Bergdorf and Philippe Chatelain for being part of the PPM Library-Team.

Moreover, I’m grateful for the Co-Me Network that gave me the opportunity to widen

my horizon and to network with different researchers. I enjoyed the collaboration and

discussions with the group of Prof. Mazza, namely Alessandro Nava and Davide Val-

torta, at the IMES, ETHZ, working on the mechanical characterization of soft biological

tissues. Prof. Matthias Teschner (University of Freiburg, Germany), Raimundo Sierra

(Harvard Medical School, Boston, USA) and Matthias Harders (BIWI, ETHZ) were great

discussion partners about the development of surgery simulators. I also want to thank

ix

Prof. Niederer (IBT, ETHZ) for being the leader of the Soft Tissue Modeling group.

Special thanks go to Frank Langlotz (MEM Center, Bern), Mireille Reef (BIWI, ETHZ)

and Ulrich Spaelter (EPFL) for their help in the organization of the CoMe Workshop 2004

resulting in a great success. My appreciation goes to the Co-Me project office, namely

Vreni Vogt and Bert Müller.

Several ETH students contributed to this project in 7 different semester projects. They

are in order of appearance: Sidclei da Silva, Claudio Christen, Hansjörg Sidler, Andreas

Ess, Ivan Guanjana, Igor Beati, Bettina Polasek.

I also want to thank my family. I’m grateful to my parents for their understanding and

their support for higher education and to my brother’s family for showing the diversity of

life outside the academic world.

Last, but not least, I wish to thank my husband Thomas cordially for accompanying me in

the ups and downs during the PhD. With his motivating character, he was a great partner

to enjoy the ups and to overcome the downs. His love is a significant part of my life and,

therefore, also part of this thesis.

Contents

Acknowledgements viii

List of Acronyms VII

List of Symbols IX

Introduction XIII

1 Motivation and Objectives 1

1.1 Introduction . 1

1.2 Virtual Surgery Simulation . 1

1.3 Virtual Reality Based Training . 3

1.4 Benefits and Risks . 4

1.5 Key Components . 6

1.5.1 Anatomical Models . 6

1.5.2 Physical Modeling and Simulation 7

1.5.3 Collision Handling . 9

2 Particle Methods 11

2.1 Introduction . 11

2.2 Function Approximations . 12

2.3 Derivative Approximations . 14

2.3.1 General Deterministic Approximation 15

2.3.2 Moment Conditions . 16

2.3.3 Discretized Formulation . 17

II Contents

2.4 Remeshing . 17

2.5 Hybrid Particle-Mesh Methods . 19

2.6 Initial and Boundary Conditions . 20

3 Particle Level Set Method 23

3.1 Introduction . 23

3.2 Level Set Method . 25

3.3 Particle Representation of Level Sets . 27

3.4 Lagrangian Particle Level Set . 27

3.4.1 Reinitialization for Particle Level Sets 28

3.4.2 Fast Marching Method . 29

3.4.3 Implementation . 32

3.5 Results . 33

3.5.1 Zalesak’s Disk and Zalesak’s Sphere 33

3.5.2 Single Vortex Flow . 39

3.5.3 Deformation Test Case in Three Dimensions 48

3.5.4 Flow under Mean Curvature . 52

3.6 Simulations of Processes in Microchip Fabrication 58

3.6.1 Isotropic Etching and Deposition 59

3.6.2 Directional Etching and Deposition 61

3.7 Virtual Cutting using Lagrangian Particle Level Sets 62

3.7.1 OpenInventor Toolkit for interactive 3D Graphics 62

3.7.2 Collision Detection for Deformable Objects 62

3.7.3 Liver Reconstruction and Collision Response 64

3.7.4 Results . 65

4 Particle Simulation of Fluids 69

4.1 Introduction . 69

4.2 Governing Equations . 69

4.3 Definition of Non-dimensional Numbers Characterizing the Flow 70

Contents III

4.4 Nondimensional Governing Equations 71

4.5 Particle Equations . 72

4.6 Compressible Vortex Ring . 73

4.7 Results . 74

4.8 Note on the Error Analysis of Chaniotis et al. 78

4.9 Remeshed SPH versus Particle-Mesh Hydrodynamics 79

5 Particle Simulation of Elastic Solids 81

5.1 Introduction . 81

5.2 Governing Equations . 83

5.2.1 Linear Elastic Model . 83

5.2.2 Nonlinear Elastic Model . 84

5.2.3 Initial and Boundary Conditions 86

5.3 Particle Equations . 86

5.3.1 Linear Elastic Model . 87

5.3.2 Hyperelastic Model . 87

5.3.3 Boundary Conditions . 88

5.4 Accuracy . 88

5.5 Plane Strain Compression Test . 90

5.5.1 Linear Elastic Model . 91

5.5.2 Hyperelastic Model . 95

5.6 Simulation of an Aspiration Test on Liver Tissue 97

6 Parallel Particle Simulations 101

6.1 Introduction . 101

6.2 Fundamentals . 104

6.3 Topologies . 105

6.4 Mapping . 108

6.5 Particle-Particle Interactions . 109

6.6 Particle-Mesh and Mesh-Particle Interpolations 111

IV Contents

6.7 Parallel Fast Multipole Method . 113

6.8 Mesh-Based Solvers . 114

6.9 ODE Solvers . 115

6.10 Parallel I/O . 116

6.11 Adaptive trees . 116

6.12 Parallel Efficiency Benchmarks . 118

6.12.1 The Fast Multipole Method . 119

6.12.2 Parallel Multigrid Poisson solver 120

6.12.3 Parallel FFT-based Poisson solver 121

6.12.4 Three-Dimensional Remeshed Smooth Particle Hydrodynamics . 124

7 Particle Immersed Boundary Method 127

7.1 Introduction . 127

7.2 Particle Presentation of Immersed Boundaries 128

7.2.1 Particle Immersed Boundary Method (pIBM) 128

7.2.2 Particle Equations . 130

7.3 Results . 131

7.3.1 Poiseuille flow . 131

7.3.2 Flow past a cylinder . 132

7.3.3 Flow past a sphere . 137

7.3.4 Falling Sphere . 138

7.4 Simulation of Anguilliform Swimming 139

7.4.1 Introduction . 139

7.4.2 Equations of the Anguilliform Swimmer 141

7.4.3 Computational Setup . 141

7.4.4 Results . 142

8 Fluid-Solid Interactions 153

8.1 Introduction . 153

8.2 Particle Model of Cottet . 154

Contents V

8.3 SPH solution of Cottet Model . 155

8.3.1 Particle discretization of governing equations 155

8.3.2 Boundary Conditions . 157

8.3.3 Numerical Results . 157

8.4 Model Extension for Compressible Fluid in 1D 160

8.4.1 Governing Equations . 160

8.4.2 Particle discretization of governing equations 162

8.4.3 Results . 164

8.5 Model Extension for a Compressible Fluid in 2D 164

8.5.1 Fluid Governing Equations . 164

8.5.2 Solid Governing Equations . 167

8.5.3 Interface Equilibrium Condition 167

8.5.4 Particle Equations . 170

8.5.5 Results . 171

8.5.6 Test Case for Shear Stresses . 172

9 Conclusions 179

9.1 Introduction . 179

9.2 Particle Level Set Method . 179

9.3 Simulation of Elastic Solids . 180

9.4 Particle Immersed Boundary Method . 181

9.5 Fluid-Solid Interactions . 182

9.6 Parallel Particle-Mesh Library . 183

10 Outlook and Future Work 185

10.1 Particle Methods . 185

10.2 Particle Simulation of Fluids . 185

10.3 Particle Simulation of Elastic Solids . 186

10.4 Particle Immersed Boundary Method . 187

10.5 Fluid-Solid Interaction . 187

VI Contents

10.6 Parallel Particle-Mesh Library . 188

10.7 Lagrangian Particle Level Set Method 189

A Cutting Using a Simplified Solid Model 191

A.1 Governing Equations and Particle Discretization 191

A.1.1 Integration Method . 194

A.1.2 Visualization of the surface . 194

A.2 Boundary Conditions . 195

A.2.1 Ghost Particles . 195

A.2.2 Fixed Boundary . 196

A.2.3 Stress-free Boundary . 196

A.3 Virtual Cutting Using Ghost Particles 198

A.3.1 Basic Idea . 198

A.3.2 Cutting by Converting Particles 199

A.3.3 Cutting by Splitting Particles . 200

A.4 Results . 204

A.4.1 Cutting by Converting Particles 205

A.4.2 Cutting by Splitting Particles . 205

A.5 Discussion . 206

B Higher Order Kernels 209

B.1 Kernels in 2D . 210

B.2 Kernels in 3D . 212

C Moving Frameworks for Compressible Fluids 215

D Bulk Viscosity 217

List of Acronyms

1D One dimension

2D Two dimensions

3D Three dimensions

AMR Adaptive Mesh Refinement

ALE Abitrary Lagrange Euler

CF Color Function

CFL Courant-Friedrichs-Lewy

CPU Central Processing Unit

DPD Dissipative Particle Dynamics

ER Endoplasmatic Reticulum

FEM Finite Element Method

FFT Fast Fourier Transform

FMM Fast Multipole Method

GFlop Giga Floating Point Operations per Second

GHz Giga Hertz

IVP Initial Value Problem

I/O Input/Output

pIBM Particle Immersed Boundary Method

LS Level Set

LSM Level Set Method

MD Molecular Dynamics

MG Multi-Grid

MPI Message Passing Interface

VIII CHAPTER 0. LIST OF ACRONYMS

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PM Particle-Mesh

PP Particle-Particle

P3M Particle-Particle Particle-Mesh

PPM Parallel Particle-Mesh Library

PSE Particle Strength Exchange

ROB Recursive Orthogonal Bisection

SAR Stop-At-Rise

SDF Signed Distance Function

SPH Smooth Particle Hydrodynamics

rSPH Remeshed Smooth Particle Hydrodynamics

VM Vortex Method

VOF Volume of Fluid

WENO Weighted Essentially Non-Oscillatory

List of Symbols

The following list explains the equation symbols used in this thesis. Naming conflicts are

unavoidable, but the proper meaning of symbol is always unambiguously determined by

the context. Vector and tensor quantities are printed in bold face.

Latin Characters

c0 Speed of sound

e Base of natural logarithm, parallel efficiency

f General function

h Inter-particle spacing, grid spacing

i, j Indices

k Constant

nd Normalization constant in dimension d

n Surface normal

p Particle, pressure

r Radius, order

rc Cutoff radius

t Time

u = (u, v, w) Velocity

x = (x, y, z) Position

X Reference position

v Volume

B Left Cauchy Green strain tensor

X CHAPTER 0. LIST OF SYMBOLS

Cd Drag coefficient

CL Lift coefficient

Cn0 Polynomial coefficient

D Volume coefficient

Dβ Differential operator

E Young’s modulus

F Deformation gradient

G Shear modulus

H Measurement of distortion

I Identity matrix

I1 First invariant of the Left Cauchy Green strain tensor

J Volume change, determinant of the Jacobian

L2 L two Euclidian norm

L∞ L infinity norm

M Mach number

N Number of particles

O(·) on the order of

R Specific gas constant

Re Reynolds number

St Strouhal number

S Parallel speed up

S Deviatoric stress tensor

T Temperature, time period

U Strain-energy function

U0 Characteristic velocity, reference velocity, swimming velocity

W Interpolation kernel

XI

Greek Characters

α = (α1, . . . , αd) Multiindex in dimension d

β = (β1, . . . , βd) Multiindex in dimension d

γ Ration of specific heats

ε Characteristic length

ε Strain tensor

δ(x) Dirac delta function

δij Kronecker delta symbol

∆ Difference of information

∆t Time step

κ Curvature

λ, µs Lame constants

µ Viscosity

µs Shear modulus

ν Poisson ratio, kinematic viscosity

ρ Density

ρ0 Characteristic or reference density

σ Cauchy stress tensor

θ Angle

τ Shear stress tensor

ξ Reference position

η, ζ Mollifier kernel functions

ω Vorticity

Γ Circulation, interface

Φ Level set function

χ Heaviside function

Ω Rotation rate, domain

XII CHAPTER 0. LIST OF SYMBOLS

Subscripts and Superscripts

1, 2, 3 Cartesian coordinate direction or components

app Apparent

eff Effective

ε Mollified to size ε

h Discretized with resolution h

i, j, k Cartesian coordinate direction or components (Einstein’s summation convention)

max Largest value of the variable

min Smallest value of the variable

p At particle position

x, y, z The component in the specified direction

∞ Asymptotically

·̄ Normalized

Special Symbols

∇ Nabla operator, gradient operator

∂
∂

Partial derivative

∞ Infinity

〈�〉p Particle approximation of � at the position of particle p

∞ Infinity

[·, ·] Closed interval

(·, ·) Open interval

D/Dt Lagrangian derivative with respect to time

Introduction

The development of novel computational methods that are capable of harnessing the in-

crease in available computing power allow today the tackling of complex scientific and

engineering problems. At the same time we observe a trend in applying advanced compu-

tational concepts that have been developed for areas such as fluid dynamics to emerging

fields such as biology and medicine where advanced computing is a promising tool for

quantitative prediction and understanding. This thesis exemplifies this approach in the

problem of virtual surgery.

One of the core challenges in virtual surgery is the modeling and simulation of soft bi-

ological tissue. This requires not only reliable biomechanical models but also a robust

and highly flexible simulation tool as the underlying physical laws and geometries are

complex. In biomechanical models we often have to consider a nonlinear elasticity law

to describe the large deformations that can appear during a medical intervention. Com-

plex physical phenomena, such as interaction with medical devices, need to be taken into

account. As the human body consist mostly of water and many vitals are filled with

fluid, biological tissue is often in contact with body fluids. The consideration of such

fluid-solid interactions, however, is numerically demanding and requires special numeri-

cal techniques. Large-scale simulations are required to resolve the complex geometries of

biological structure. The cutting of tissue can cause large topological changes leading to

a numerical challenge especially for grid-based methods where this requires the creation

of new cells and an update of the connectivity information.

XIV CHAPTER 0. INTRODUCTION

We investigate the use of particle methods as a simulation tool for virtual surgery and

consider the performance in key requirements

1. Robustness and flexibility with respect to physical laws and geometries

2. Consideration of fluid-solid interactions

3. Behavior with respect of large deformation and topological changes

4. Scalability of large scale simulation on parallel computer architecture.

This thesis reviews and extends computational methods to simulate biological systems

for the use in virtual surgery.

The thesis is structured as follows:

Chapter 1. Motivation and Objectives

The motivation of this thesis is the need to improve the efficiency and accuracy of virtual

surgery simulations.The focus of virtual surgery is on the development, integration and

validation of enabling technologies towards advanced computer aided and image guided

systems for medical interventions. It supports the complete treatment process from di-

agnosis, therapeutic planning and simulation via intra-operative action to postoperative

care, monitoring and documentation. In this framework, virtual reality based surgical

simulation is an area of special interest. Surgical simulators can only fulfill their mission

if they provide a realistic and configurable training environment. How realistic are virtual

surgery nowadays?

A training environment requires that the simulated organs behave authentically in a

biomechanically and physiologically perspective and the environment is represented in a

realistic manner. However, due to the high complexity of the simulated system, none of

the simulators proposed up to now can even approximately achieve the necessary level

of realism in simulation and visualization. Chapter 1 illustrates the state of the art of

surgical simulators and shows benefits and risks of the virtual reality training concept. In

XV

Section 1.5, we presents the key components of a surgical simulator and their influence

on the training effect.

Chapter 2. Particle Methods

Particle methods have been successfully applied in a wide range of problems, from astro-

physics [84, 107], to computational fluid dynamics and [41, 109] and molecular dynamics

[74], but they are hardly used for the simulation of soft biological tissue. Why do we con-

sider particle methods for the use in virtual surgery?

The advantages of particle methods include adaptivity and multi-resolution capabilities

of the computational elements, good stability properties of the discretization, and, similar

to discrete systems, an inherent link of the computational elements to the physics that they

represent. The flexible handling of geometries and physics makes particle methods an

appealing technique for the numerical challenges in virtual surgery simulations. Chapter 2

includes the fundamental background of continuum particle methods as they are used in

this study. It illustrates basic numerical techniques, such as derivative approximations

(Section 2.3) and the redistribution of particles (Section 2.4).

Chapter 3. Particle Level Set Method

To describe the evolution of interfaces/surface, we distinguish two classes of computa-

tional methods: interface capturing and interface tracking methods. Particle methods are

often associated with tracking methods, because interfaces evolution in tracking methods

is solved in a Lagrangian fashion using markers. In level set methods, however the in-

terface is captured using an implicit function that are traditionally evolved in an Eulerian

way. How can we combine the level set method with Lagrangian particle methods?

We can naturally solve the underlying level set equation in a Lagrangian frame using

particles that carry the level set information as also shown in Section 3.3. The consistent

remeshing procedure enforces the regularization of the particle locations when the particle

XVI CHAPTER 0. INTRODUCTION

map gets distorted by the advection field. The Lagrangian description of the level set

method is inherently adaptive and exact in the case of solid body motions. The efficiency

and accuracy of the method is demonstrated in several benchmark problems in two and

three dimensions involving pure advection and curvature induced motion of the interface

(Section 3.5). Section 3.6 and 3.7 show that the simplicity of the particle description is

well suited for real time simulations of surfaces involving cutting and reconnection as in

virtual surgery environments.

Chapter 4. Particle Simulations of Fluids

The particle method used in this study bases on remeshed Smoothed Particle Hydrody-

namics (rSPH), a continuous particle method to simulate compressible viscous fluids de-

scribed by the Navier-Stokes equations. How can continuous particle methods solve the

Navier-Stokes equations?

This chapter shows the governing equations of a compressible viscous fluid and its par-

ticle discretization. Moreover, it includes results of a compressible vortex ring simulation

and a general discussion on Smooth Particle Hydrodynamics.

Chapter 5. Particle Simulations of Elastic Solids

The correct reproduction of the deformation behavior is a crucial part of any surgical sim-

ulator. A correct reproduction requires first of all a reliable model for the stress-strain

relationship with suitable parameters. Linear elastic models are suitable up to a stretch

of λ = 10%. When the deformation exceeds a stretch of 10%, nonlinear effects need to

be taken into account. Finally, an accurate numerical solver of the model should deliver

the desired simulation results. An established numerical method to solve elasticity prob-

lems is the grid-based finite element method that solves the nonlinear elasticity models in

the reference coordinate system. What kind of deformations can we solve with particle

methods?

XVII

In Chapter 5, we consider a remeshed Lagrangian particle method to simulate an elastic

solid undergoing large deformations. The particle solver can handle elastic solids de-

scribed by linear and nonlinear constitutive models. In the nonlinear case, we are able to

omit the Eulerian description of the deformation gradient by considering its Lagrangian

evolution in the governing equations (Section 5.2). Therefore, we present for the first time

a Lagrangian particle simulation of elastic solids described by a nonlinear model. The ef-

ficiency and accuracy of the method is demonstrated in Section 5.4 and 5.5, showing

several benchmark problems in two and three dimensions involving large deformations

and comparisons to finite element solutions. The results show similar accuracy as the

finite element solution. The finite element solver reveals nonphysical numerical artifacts

in the plane strain compression test at large deformations whereas the particle solution

remains plausible. The particle solver for nonlinear elastic material is proven to be well

suited to simulate liver tissue as shown in Section 5.6.

Chapter 6. Parallelization of Particle Simulations

Particle simulations formally represent a N-body problem with a computational cost that

can increase with the square of the number of particles. Although several techniques exist

to reduce the computational cost, their wide-spread use is hindered by several compu-

tational challenges in the parallelization of these methods. What kind of concepts are

available to reduce the computational cost of particle methods and how do they perform

on large scale problems?

The highly efficient Parallel Particle Mesh (PPM) library solves the key parallelization

issues involving particle-mesh interpolations and the balancing of processor particle load-

ing and adaptive trees. Section 6.1 to 6.4 give an introduction to the main issue of paral-

lelizing particle-mesh computations. The computation of particle-particle interactions are

addressed in Section 6.5, particle-mesh interpolations in Section 6.6. Section 6.7 illus-

trates the parallel fast multipole method for handling long-range interactions. Section 6.8

presents the fast fourier transformation to solve the Poisson equation on a mesh repre-

XVIII CHAPTER 0. INTRODUCTION

sentation. The efficiency of the Parallel Particle Mesh (PPM)library is demonstrated in a

series of benchmark tests on distributed memory and on a shared-memory vector archi-

tecture. Section 6.12.1 includes the benchmark test for the parallel fast multipole method.

The poisson solvers (Section 6.12.3) are tested on a three-dimensional test problem using

up to 128 processors. The use of the library is shown by the simulation of compressible

vortex rings using a novel formulation of smooth particle hydrodynamics (Section 6.12.4).

Chapter 7. Particle Immersed Boundary Method

Flow-structure interactions are involved in several processes of living organisms. The

geometrical structures in these processes are very complex presenting a number of a nu-

merical challenges for fluid solvers. How can we construct a particle method that can

handle complex geometries in a fluid environment?

In Chapter 7, we consider the novel particle Immersed Boundary Method to enforce

no-slip boundary conditions on complex geometries. A forcing term appearing in the

momentum equation is evaluated on the boundary points such that the no-slip boundary

condition is fulfilled on the boundary. The method applied to an isothermal compressible

fluid is capable of approximating the flow of incompressible medium at a Mach Number

of 0.05. The efficiency and accuracy of the method is demonstrated in several benchmark

problems in two and three dimensions involving flow past a cylinder/sphere (Section 7.3).

The particle Immersed Boundary Method is shown to be well suited for the simulations

of anguilliform swimming (Section 7.4).

Chapter 8. Fluid-Solid Interactions

A fluid-solid system in one-dimension can be described by a unified formulation of the

Burger’s and the wave equation coupled by a force equilibrium at the fluid-solid interface

as presented by Cottet [39]. Cottet solved the unified formulation accurately using a 1D

particle solver [39]. How flexible are particle methods in solving fluid-solid interactions?

XIX

In Chapter 8, we consider a remeshed Smoothed Particle Hydrodynamics (rSPH) solu-

tion of this fluid-solid problem. The anisotropic diffusion terms appearing at the interface

in the unified formulation are solved numerically either based on the method of parti-

cle strength exchange (PSE) or by isotropic one-sided differentiation. In Section 8.3, the

rSPH method is compared with an Arbitrary Lagrange Euler (ALE) method and the hybrid

finite-difference particle formulation of Cottet [39] in one dimension. The results show

that both approaches are more accurate and more robust that the ALE solution but less

accurate that the result of Cottet due to implementation details. Both rSPH approaches

converge linearly with the anisotropic diffusion approach having a lower absolute error.

Moreover, we extend the model to the compressible Navier-Stokes equation in one and

two dimensions in Section 8.4 and 8.5, respectively. Our mathematical model involves

the Navier-Stokes equation of compressible viscous fluid and the constitutive law of a

linear elastic solid. The governing equations coupling the fluid and the solid model are

derived from first principles of continuum mechanics. To demonstrate the performance

of the particle simulation we consider various cases testing the behavior of the fluid-solid

interface exposed to normal and shear stresses. The particle solution matches well with

the analytic solution when available.

Chapter 1

Motivation and Objectives

1.1 Introduction

This thesis is motivated by the need to advance the efficiency and accuracy of virtual

surgery environments and, in particular, to increase the realistic aspect of virtual surgery.

An effort is being made to increase the accuracy of physically based modeling of flow-

structure interactions: a key aspect of many virtual surgery environments.

The effective simulation of flow-structure interactions is a problem inherent to sev-

eral physical problems ranging from hydrodynamics to material processing. It entails

a number of challenging computational problems such as interface modeling, efficient

flow solvers and modeling of solids under large deformations.

In this thesis we address several of these computational challenges and contribute to

the modeling of flow-structure interactions such that it may be employed in several disci-

plines.

1.2 Virtual Surgery Simulation

Virtual surgery simulation combines two different concepts, virtual reality and simulation,

to form a new paradigm of training system.

Simulation is defined as the technique of representing the real world by a computer

program with the restriction that it should imitate the internal processes and not merely

the results of the thing being simulated [183]. The term simulator denotes in a technical

context a machine that simulates an environment for the purpose of training or research

2 CHAPTER 1. MOTIVATION AND OBJECTIVES

[183]. Simulation can serve a wide range of purposes. It can lead a better understanding

of complex systems, it can be used as a training tool, or it can help to predict the future

behavior of a system.

Virtual reality describes a hypothetical three-dimensional visual world created by a com-

puter. User wears special goggles and fiber optic gloves etc., and can enter and move about

in this world and interact with objects as if inside [183]. Many applications of virtual re-

ality have been proposed in the medical field, i.e. the visualization of different organs as

three dimensional objects for teaching purposes or the reconstruction of patient specific

anatomy from radiological data for diagnosis [161].

Figure 1.1: Typical setups in minimally invasive surgery

Simulator systems have been developed for the planning of surgical procedures, e.g.

to predict the outcome of a medical intervention. This is of special interest in facial

surgery, where the main goal is a modification of the facial tissue to correct abnormalities

[190, 166]. Other examples are the planning of radiation doses for cancer therapy [17]

or the planning of the placement of dental implants [173]. This category of simulators is

patient specific and faces several challenges. The accuracy of the underlying models and

methods are crucial in surgical planning while on the contrary, the real time capabilities

are important for a training device.

1.3. VIRTUAL REALITY BASED TRAINING 3

According to Liu et al. [102], surgical training simulators can be classified into needle-

based, open surgery, and minimally invasive systems (Fig. 1.1). An example for the first

type of a surgery simulator is the CathSim Vascular access simulator developed by Im-

mersion Corporation for the training of the intravenous catheter insertion [133]. Open

surgery is considerably more difficult to simulate as the interaction between the surgeon

and the patient is much more flexible. The field of view, the range of motion and the

tactile feedback are remarkably larger for this type of interventions. So far, the simulation

has largely been limited to the suturing of open wounds [179, 20].

1.3 Virtual Reality Based Training

Virtual training devices are well established in the instruction of pilots in form of flight

simulators. The analogy to the aviation industry has been pointed out early in the devel-

opment of surgical training simulators [139] and the success story of flight simulators has

been a key motivation to build simulators for the medical field. The research on surgical

simulators of the past decade has revealed many challenges for a successful implemen-

tation of surgical training simulators. The human body is a highly complex system that

cannot be completely modeled. Several surgical instruments with several degrees of free-

dom interact with the objects that can be deformed and fragmented. Moreocer, there is a

wide range of user actions leading to reactions of the simulator, e.g. bleeding, that need

to be taken into account.

At the beginning of the simulator development for minimally invasive surgery, the ex-

pectation was that a satisfactory surgery simulator would be available before the year 2000

[86]. While there have been many efforts for the generation of a wide range of different

simulators systems, this expectation has not yet been met. The numerous research efforts

in the field are still not sufficient to cope with the many challenges encountered during the

last decade. Surgical simulators have been investigated in diagnostic endoscopy investiga-

tions [174], laparoscopic surgical procedures [10, 13, 100], hysteroscopy [76] (Fig. 1.2),

arthroscopic interventions [191], eye surgery [138, 142] and radiological procedures [73].

4 CHAPTER 1. MOTIVATION AND OBJECTIVES

Figure 1.2: Snapshot of a virtual surgery simulation using a hysteroscopy simulator [76]

1.4 Benefits and Risks

Virtual reality based training offers several benefits compared to other training methods,

such as training sessions on human cadavers or animals, but it also entails risks. In this

section we discuss the main strength and weaknesses of this kind of training system. Vir-

tual reality does not involve real patients or animals, offering a risk-free environment for

training. In general, patients prefer to be treated by an experienced surgeon and will show

some discomfort and resistance for the participation in medical interventions for training

purpose. The computer based simulation enables the tracking of all actions of the trainee,

thus providing the basis for an objective assessment. So far, performance measurement is

limited to the final result of the intervention and the subjective judgement by the super-

vising expert [102]. Computer based training devices, however, are capable of objective

assessment. Therefore, virtual reality based surgical training simulators could be used for

the recertification of practicing medical doctors [12]. The simulators can provide addi-

tional training where deficiencies in surgery practice are evident. Currently, training is

depending on the actual demand of interventions and the availability of an appropriate

case. This training-by-opportunity does not allow scheduled teaching sessions because

1.4. BENEFITS AND RISKS 5

the cases of demand are unpredictable. In contrary, surgical simulators can be available at

all times and places. Therefore, training can be performed during normal working hours

reducing the costs and increasing the comfort for both teacher and students. Nowadays,

any medical student will experience a limited number of cases during his training pe-

riod. A virtual reality based simulator can offer a large number of different anatomies

and pathologies that can be handled in a small period of time. Training can be repeated

to test different procedures and work flows. Thus, the simulator offers surgeons the op-

portunity to improve his surgical skills. A high fidelity simulator can offer scenes of high

complexity and introduce a number of complications during the intervention, in case of

hysteroscopy a perforation, loss of pressure, unexpected blood flow etc. Such a problem-

based surgical simulation may improve patient safety not only by improving the surgeons

skills, but also by teaching surgeons to avoid complications during the surgery and to

manage them. It is expected that virtual reality based training can reduce the costs for the

training of surgeons.

On the other hand, surgical simulators are also associated with some risks. Several risks

are inherent to simulator based teaching [176]. Most dangerous is the risk of wrong teach-

ing. Simulator fidelity may always be imperfect independent from the quality level of un-

derlying model. The simulator system may not perfectly reproduce the tasks performed

during actual interventions. Students may acquire a wrong impression of the procedure

and adopt an inappropriate behavior or develop a false sense of security in their skills

which potentially can harm the patient. Proficiency on a simulator does not ensure profi-

ciency in clinical settings. Therefore, it is crucial to validate the transfer of skills from the

simulator to the operating room. The system should not pretend to be more realistic than

it actually is. The trainee has to be aware to which extend the simulator imitates reality.

6 CHAPTER 1. MOTIVATION AND OBJECTIVES

1.5 Key Components

1.5.1 Anatomical Models

Anatomical models are important for the quality of a surgical simulator by offering vari-

able training scenarios. Similar to flight simulation, where different weather conditions,

airports and system malfunctions can be defined, surgical simulations also need the same

range of configurable training conditions. When a user repeats the training with the same

single organ model he will adapt to this special anatomy. Therefore, the training scene

should different from session to session preferably as in reality. The simulator system

has to be able to generate anatomical models considering the natural variability and to

integrate a wide range of different pathologies.

Figure 1.3: Two anatomical models of the human liver: Triangular surface mesh segmented from

the Visual Human Dataset [114] (left) and its reconstruction based on a particle representation

(≈ 400 particles) [82]

The most common source for the generation of anatomical model [22, 185] is the data

set Visible Human Project [114]. In general, the organs of interest are reconstructed from

either the female or male anatomy. These data sets provide a high resolution and good im-

age quality, so that the resulting models can be segmented with a high accuracy. Fig. 1.3

shows a liver topology segmented from the Visible Human Project and its reconstruc-

tion based on a particle representation. Only two data sets are available of the Visible

1.5. KEY COMPONENTS 7

Human project, consequently limiting the number of scenes. Alternatively, Computer To-

mography (CT) and Magnetic Resonance (MRI) images have been widely used for the

generation of anatomical models [126, 191]. As Computer Tomography imaging exposes

the subjects to radiation, experts only apply it on diseased patient. Magnetic Resonance

imaging is the technique of choice when healthy volunteers are scanned to provide basic

anatomical data. Both Computer Tomography and Magnetic Resonance Imaging belong

nowadays to standard equipment of most hospitals. They can be used to provide the

anatomy of a patient for the training of a patient specific case. The raw data of the scans

have to be segmented to provide an anatomical model in form, for example, of a triangular

surface. Segmentation methods can be classified according to their degree of automation

into either manual, semi-automatic or fully automatic.

1.5.2 Physical Modeling and Simulation

The deformation behavior of the tissues is crucial for a correct perception of the scene

both visually and haptically. A simple example is the tactile investigation of tumors with

the endoscopic instruments. The surgeon will evaluate both the visual deformation and

the force resistance and choose the further proceeding based on this diagnosis. Therefore,

the biomechanical properties of the tissues are of special interest to achieve a suitable

representation of these effects. The determination of a constitutive model and the eval-

uation of the mechanical parameters are associated with several problems, because the

behavior of tissue depends heavily on its components (muscular tissue, cartilage), stress

state (relaxed, isotonic), and vitality (in-vivo, ex-vivo) [104]. Tissues are inhomogeneous,

anisotropic, and viscoelastic materials and their properties vary with age, sex, and genre

[102]. Three different principles have been proposed for the estimation of tissue para-

meters without introducing damage, namely indentation [28, 121], aspiration [116], and

torsion experiments [171]. Most researcher perform ex-vivo experiments in a controlled

environment that has limited relevance. Only a few number of in-vivo experiments have

been reported so far, including the study of Mazza et al. [104].

8 CHAPTER 1. MOTIVATION AND OBJECTIVES

Figure 1.4: Two different liver representation. A finite element model(left) and a particle system

(right)

Several numerical methods have been investigated for the simulation of the mechanical

behavior of tissue models: Mass spring systems, finite element method and, in this thesis,

a particle approach (Fig. 1.4). Mass spring models has been a common technique to

represent deformable models for real time simulations [110, 170, 23, 168]. Mass spring

models are commonly described by a grid-like structure where the nodes represent mass

points and the edges behave like physical springs. They are relatively simple to implement

and grids with a large number of nodes can be updated at high rates. The main problem

for realistic simulation based on mass spring system is the determination of the correct

parameterization of the grid. The choice of the grid topology, the spring constants, and

damping coefficients is unclear, and, therefore, the simulation results often in an incorrect

imitation of the tissue behavior.

Finite Element methods (FEM) [132] are commonly used for simulations of deformable

bodies in continuum mechanics. FEM solvers are accurate numerical solvers where the

continuum is discretized by finite elements residing on a grid. Due to their computational

cost ordinary finite elements methods are not used often for realtime application. With

the restriction to linear elasticity it is possible to achieve real-time performance by using

a limited number of nodes. Basdogan et al. [11] for example use linear and isotropic el-

ements to achieve the update rates required by the haptic interface. Deformations can be

computed solely based on surface elements without the need to compute the deformations

of inner elements [22] . An adaptive method has been presented by Tendick et al. [185]

and Debunne et al. [48] where computational elements accumulate in areas of stronger

1.5. KEY COMPONENTS 9

deformations. The consideration of tissue cutting, however, requires a significant effort

in modeling and computation for finite element methods due to its purely grid based ap-

proach (cf. Section 1.5.3). Moreover, the handling of fluid-solid interactions using FEM

is still unclear. This aspect is important for physiological phenomena such as bleeding

after the cutting of vessels. To correctly visualize the resulting blood flow.

Particle methods (cf. Chapter 2) aim to become an alternative approach bridging the

gap between the efficient but rather heuristic mass-spring models with the accurate, but

computationally expensive finite-element methods.

1.5.3 Collision Handling

The handling of interactions between the virtual manipulators, controlled by the user,

and the virtual anatomy is dominated by collision handling. Collision handling involves

two steps, namely collision detection and collision response. First, collisions between

the different objects in the virtual scene, such as endoscopic instruments and organs,

have to be detected. Once a collision has been identified, the collision response may

be handled, i.e. the correct reaction has to be computed. For example, a needle will

penetrate the biological tissue and a scalpel will cut it. Depending on the location of

interaction the tissue can be deformed or disrupted or starts to bleed. From numerous

kinds of collision handling, the process of cutting tissue appears to be the most complex

operation challenging the real time capabilities of most computer based simulations.

Collision detection is commonly achieved by a two level approach. First, a fast evalu-

ation of regions with potential collisions is performed using collision bounding [37]. In

a second step, the exact contact positions are evaluated within the identified regions by

a collision refinement. Collision bounding requires a pre-processing step to partition the

single objects into elementary primitives such as spheres, axis-aligned bounding boxes

(AABBs) [37] or oriented bounding boxes (OBBs) [66]. The latter are aligned with the

eigenvectors of the objects and represent therefore the smallest Cartesian volume of the

object. The respective primitives are then used to bound the potential collisions. To fur-

10 CHAPTER 1. MOTIVATION AND OBJECTIVES

Figure 1.5: Snapshot of a virtual cutting simulation. Cutting is one of the challenging problems in

virtual surgery [21]

ther enhance the computational speed, hierarchies of bounding tests have been presented

[66] . The use of such techniques is limited to rigid objects. In case of deformable objects,

the data structure holding the primitives has to be re-evaluated which is a time consuming

operation in an average application. Heidelberger et al. [78] presented a real time method

for the evaluation of the intersections based on Layered Depth Images (LDI).

The handling of collisions depends strongly on the interacting objects. Simple contacts

lead to deformations, others to the dissection of the tissue. Bielser et al. [21] has presented

a method for cutting of tissue represented by tetrahedral meshes in real time (cf. Fig. 1.5).

Arbitrary intersections of the tool with the mesh are evaluated by a state machine which

tracks the topology of every tetrahedra and controls the progressive subdivision of the el-

ements. However, the reliable and realistic simulation of tissue dissections in real-time is

not yet fully solved due to the complexity of the problem. The cutting of tissue represents

the most complex operation challenging the real time capabilities of most computer based

simulations. For a realistic impression, cuts should be allowed along arbitrary trajectories.

This causes discontinuities in the grid representations of organs which are computation-

ally expensive to handle.

Chapter 2

Particle Methods

2.1 Introduction

A large number of physical problems can be modeled using particle-based methods.

Particle descriptions can be used for the simulation of continuum systems as in the

case of discrete fluid or solid elements in Smooth Particle Hydrodynamics (SPH)

[109] and vorticity-carrying fluid elements in Vortex Methods (VM) [41, 75, 36] and

inherently discrete systems as in gravitational particles for astrophysics [84], Dissipative

Particle Dynamics (DPD) [58] for mesoscale polymer descriptions, atomistic Molecular

Dynamics (MD) simulations [74], and charged particles in plasma physics [84].

Continuum particle methods are based on the approximation of smooth functions by

integrals that are being discretized onto computational elements called particles. A parti-

cle p resides at a position xp and carries a physical quantity Φp. These particle attributes

evolve to satisfy the underlying governing equation in a Lagrangian frame of reference

[97]. In pure particle methods, the governing equations in form of Partial Differential

Equations (PDE) are transformed into sets of Ordinary Differential Equations (ODE) by

replacing spacial derivatives of quantities by an approximation based on the particle quan-

tities. The particle approximation involves a superposition over all particle. The dynamics

of the particles are governed by sets of ODEs that determine the trajectories of the parti-

12 CHAPTER 2. PARTICLE METHODS

cles p and the evolution of their properties Φ, thus:

dxp

dt
= u(xp, t) =

N∑

q=1

U(xp,xq; Φp, Φq), p = 1, . . . , N (2.1)

dΦp

dt
=

N∑

q=1

F(xp,xq; Φp, Φq), p = 1, . . . , N, (2.2)

where u is the velocity field. The dynamics of the simulated system are completely de-

fined by the functions U and F that represent the physics of the problem. In pure particle

methods, K and F emerge from the integral approximations of differential operators;

If the functions U and F are local, the algorithmic complexity of the sums in Eq.(2.1)

and (2.2) is O(N). For long-range interactions the cost is O(N2), but fast algorithms

such as multipole expansions [70] are available to reduce the complexity to O(N) also in

these cases.

The issue of efficient parallel implementation of particle methods is addressed in Chap-

ter 6.

2.2 Function Approximations

A smooth approximation of the field function can be constructed by using a mollification

kernel ζε(x):

Φε(x) = Φ ? ζε =

∫

Φ(y) ζε(x − y) dy (2.3)

where ε denotes a characteristic length of the kernel.

The kernel is approximating the Dirac delta function, i.e. δ(x) = limε→0 ζε(x), and is

said to be of order r when the following moment conditions [41] are satisfied:

∫

ζε(x)dx = 1, (2.4)

∫

xiζε(x)dx = 0 if |i| ≤ r − 1, (2.5)

∫

|x|rζε(x)dx ≤ ∞ (2.6)

2.2. FUNCTION APPROXIMATIONS 13

Monaghan [106] presented a systematic way of constructing kernels ζε(x). The mol-

lified approximation Φε(x) can be discretised using the particle locations as quadrature

points and a particle approximation of the regularized field function is

Φh
ε (x) = Φh ? ζε =

N∑

p=1

vpΦpζε(x − xp) (2.7)

where xp, and vp denote the position and volume of the p-th particle, and Φp = Φ(xp) the

field value at the p = 1, . . . , N particle locations.

As discussed in [41] the error introduced by the quadrature of the mollified approxima-

tion of Φ can be distinguished in two parts as

Φ − Φh
ε = (Φ − Φ ? ζε) + (Φ − Φh) ? ζε (2.8)

The first term in Eq. (2.8) denotes the mollification error that can be controlled by appro-

priately selecting the kernel properties. The second term denotes the quadrature error due

to the approximation of the integral on the particle locations. The overall accuracy of the

method [41] results in

‖Φ − Φh
ε ‖0,p ≤ ‖Φ − Φε‖0,p + ‖Φε − Φh

ε ‖0,p ∼ O(εr) + O
(

hm

εm

)

(2.9)

where ‖(.)‖0,p =
(∫

(.)p dx
)1/p

, m is a large enough fixed number and r denotes the order

of the first non-vanshing moment of the kernel ζε [41]. For equidistant particle locations

we obtain m = ∞ and for positive kernels such as the Gaussian, r = 2.

In this study we choose ζε to be a quartic spline kernel with second order of accuracy

[29] (cf. Fig. 2.1) is implemented:

ζε(x) = ndζ̄ε = nd







s4

4
− 5s2

8
+ 115

192
0 ≤ s < 1

2
, s = |x|

ε
,

−s4

6
+ 5s3

6
− 5s2

4
+ 5s

24
+ 55

96
1
2
≤ s < 3

2
,

(2.5−s)4

24
3
2
≤ s < 5

2
,

0 s ≥ 5
2
.

(2.10)

The normalization value nd depends on the dimension of the problem and is computed as:

nd =
1

∑

j vj ζ̄ε(x − xj)
(2.11)

14 CHAPTER 2. PARTICLE METHODS

ensuring the property of partition of unity for the discrete superposition over the particles.

The normalization value nd serves as a correction factor to reduce the error resulting

from the integral approximation that leads from Eq.(2.3) to Eq.(2.7). When performing

analytical operations, such as differentiations, to the kernel ζε(x), the normalization value

is neglected. Note that the moment conditions expressed by the integrals of the mollifier

functions are not often well represented in the case of discrete particle sets. These moment

conditions can be ensured by appropriate normalizations [41]. Kernels of arbitrary order

0

0.2

0.4

0.6

0.8

1.0

1.2

–3 –2 –1 0 1 2 3

S

Figure 2.1: Plot of the quartic spline kernel ζ̄ε(s) (Eq. (2.10))

[14] are possible by giving up the positivity property of the kernel function. In Appendix

B, we present several examples of higher order kernels derived from exponential functions

as introduced by Eldredge et al. [54].

The error estimates reveal a very important fact for smooth particle approximations. In

order to obtain accurate approximations smooth particles must overlap.

2.3 Derivative Approximations

Particle approximations of the derivative operators can be constructed through their inte-

gral approximations. This can be achieved by taking the derivatives of Eq.(2.3) as convo-

2.3. DERIVATIVE APPROXIMATIONS 15

lution and derivative operators commute in unbounded or periodic domains.

2.3.1 General Deterministic Approximation

A general formulation involves the development of integral operators that are equivalent

to differential operators [54]. They were first introduced for the integral approximation

of the Laplacian [49] in the diffusion equation leading to the particle strength exchange

(PSE). Eldredge et al. [54] presented a general deterministic integral representation for

derivatives.

The differential operator is denoted as

DβΦ(x) =
∂|β|

∂xβ1

1 ∂xβ2

2 · · · ∂xβd

d

Φ (2.12)

where β = (β1, β2, . . . , βd) is a multiindex with |β| = β1 +β2 + . . .+βd and the physical

dimension d. Also yβ = yβ1yβ2 . . . yβd and β! = β1!β2! . . . βd!.

The general integral operator approximating the action of an operator DβΦ(x) on a

function Φ is approximated as:

Lβ
ε Φ =

∫

(Φ(y) ∓ Φ(x))ζβ
ε (x − y) dy (2.13)

where the minus sign is chosen for |β| even and the plus in case it is odd. The integral

operator can be discretized using the particle locations as quadrature points resulting in

an overall approximation of the order r:

‖DβΦ − Lβ,hΦ
ε ‖0,2 = ‖(Dβf − Lβf) + (Lβf − Lβ,h)‖0,2

≤ ‖(DβΦ − Lβ
ε Φ)‖0,2 + ‖(Lβ

ε Φ − Lβ,h
ε Φ‖0,2

≤ C1 εr‖Φ‖r+2,2 + C2
hm

εm+|β|−1
‖Φ‖m,2 (2.14)

Note again that the first term implies the error due to the integral approximation, related to

the moments of the mollifier and the second term is the error introduced by the quadrature,

further strengthening the constraint for particle overlap.

16 CHAPTER 2. PARTICLE METHODS

The order of a derivative approximation can be determined by the evaluation of the

α-Moments of a kernel η(x) that are defined as

Mα =

∫

xαη(x)dx, (2.15)

A kernel ηβ
ε (x) of order r for the approximation of the operator Dβ needs to satisfy the

following moment conditions [54]

Mα =







(−1)|β|β!, α = β

0, |α| = |β|, α 6= β

0, |α| ∈ [1, |β| − 1] ∪ [|β| + 1, |β| + r − 1]

(2.16)

2.3.2 Moment Conditions

In this section, we prove that the derivatives of an r-order kernel satisfying Eqs.(2.4)-(2.6)

lead to a derivative approximation of order r by showing the validity of Eq.(2.16).

Let assume the kernel ηβ
ε (x) to be equal to the kernel derivative Dβζε(x). Then the

moment integral Mα (Eq.(2.15)) can be integrated by parts [24]

Mα =

∫ ∞

−∞

xαDβζε(x)dx (2.17)

=
[
xαD(β1,...,βk−1,...,βd)ζε(x)

]∞

−∞

−
∫ ∞

−∞

αk x(α1,...,αk−1,...,αd)D(β1,...,βk−1,...,βd)ζε(x)dx

Assuming the compactness of the kernel Dβζε(x) we obtain

Mα = −αk

∫ ∞

−∞

x(α1,...,αk−1,...,αd)D(β1,...,βk−1,...,βd)ζε(x)dx

Applying the integration of parts for β-times yields

Mα = (−1)β α!

(α − β)!

∫ ∞

−∞

x(α−β)ζε(x)dx. (2.18)

Using Eqs.(2.4)-(2.6) we obtain:

∫ ∞

−∞

xαDβζε(x)dx =







(−1)|β|α!, α = β

0, |α| = |β|, α 6= β

0, |α| ∈ [1, |β| − 1] ∪ [|β| + 1, |β| + r − 1]

(2.19)

which is equivalent to Eq.(2.16).

2.4. REMESHING 17

2.3.3 Discretized Formulation

Kernels satisfying Eq.(2.19) are used in particle methods such as Smooth Particle Hy-

drodynamics (SPH) [107, 109] and remeshed SPH (rSPH)[29]. The derivatives of a field

quantity Φ on a particle p are approximated in a conservative form as:

〈
DβΦ

〉

p
=
∑

q

vq (Φq − Φp) Dβζε(xp − xq), (2.20)

where vq is the volume of particle q. The normalization values for the kernels are chosen

such that the corresponding non-zero moment condition of the discretized Eq.(2.16) is

satisfied. The kernel of Eq. (2.10) has its first three derivatives continuous allowing a

smooth approximation of the spatial derivatives of Φ(x).

2.4 Remeshing

A key aspect of the present method involves the use of a remeshing procedure. In smooth

particle methods, as discussed earlier, particles must overlap at all times in order to guar-

antee the convergence of the method [44]. As it is shown in [40] remeshing is equivalent

to a regularisation of the particle description of the advected quantities.

In this work remeshing is employed in order to regularize the distorted particle locations

and to redistribute accordingly particle quantities onto a uniform set of particles with the

spacing h. The redistribution of particle quantities is achieved using the 3rd order M ′4

kernel [96] which in one dimension it is expressed as:

M
′

4(x, h) =







1 − 5s2

2
+ 3s3

2
0 ≤ s < 1, s = |x|

h

(1−s)(2−s)2

2
1 ≤ s < 2,

0 s ≥ 2.

. (2.21)

In higher dimensions the interpolation formulas are tensorial products of their one-

dimensional counterparts. Remeshing is necessary only when particles cease to overlap

as they adapt to the flow map. In order to determine the rate at which particle remeshing

is necessary we introduce a measure of distortion. This measure relies on the fact that the

18 CHAPTER 2. PARTICLE METHODS

weighted sum Hp(t) over all particles j at the position of particle p must be equal to unity

in a regularized particle map

Hp(t) =
∑

j

vj(t)ζε(xp(t) − xj(t)) (2.22)

Hp(0) = H0,p = 1. (2.23)

The average change of Hp(t) over all particles is a measurement of distortion

∆H =
1

N

∑

j

|Hj(t) − H0,j |
H0,j

, (2.24)

where N is the number of particles, and Hj(t), H0,j are the weighted sums of particle j

as presented in Eq.(2.22) and (2.23), respectively. When considering a purely rigid body

motion ∆H is zero. In our simulations remeshing is invoked each time the function ∆H

exceeds a small prespecified threshold.

At flat interfaces, we apply a one-sided remeshing technique as described in [42]. The

particle that resides in the cell closest to the boundary (cell J centered at xJ) is redistrib-

uted according to the weights (cf. Fig 2.2)

ΛJ(xp, h) =







1 − 3
2
v + 1

2
v2 for cell J, v = |xp−xJ |

h
,

v(2 − v) for cell J + 1,

1
2
v(v − 1) for cell J + 2,

0 for cell J + 3.

(2.25)

In the cell J + 1 the support of the M ′4 kernel still exceed the border of the domain, and

a kernel of smaller support, here the Λ2(r, h), is used

Λ2(r, h) =







1 − s2 0 ≤ s < 1
2
, s = |r|

h

1
2
(1 − s)(2 − s) 1

2
≤ s < 3

2
,

0 s ≥ 3
2
.

(2.26)

Remeshing at complex boundaries requires a normalization scheme of the remeshed

quantities. The normalization scheme is similar to the normalization that ensures the

partition of unity (Eq. (2.11)).

2.5. HYBRID PARTICLE-MESH METHODS 19

Wall
Old particle

New particle

cells J+2

cells J+1

cells J

Figure 2.2: Remeshing in a bounded domain

Φj,new =
Vnew

∑Nold

i=1 VpM ′4(|xi − xj|, h)

Nold∑

i=1

Φi,oldM
′4(|xi − xj |, h) (2.27)

where Vnew = h3 is the volume of the new particle. We redistribute the extensive proper-

ties of the particle that requires conservation, e.g. mass and momentum.

2.5 Hybrid Particle-Mesh Methods

In hybrid particle-mesh methods, as introduced by Harlow [77], some of the differential

operators are evaluated on a superimposed regular Cartesian mesh. The functions U and

F of Eqs.(2.1) and (2.2) are evaluated on a mesh through the corresponding field equation.

The hybrid method requires:

• the interpolation of the ωp carried by the particles from the irregular particle loca-

tions xp onto the regular mesh points (Φm)

Φm =

N∑

p=1

Q(xm − xp)ωp, m = 1, . . . , M (2.28)

20 CHAPTER 2. PARTICLE METHODS

• the interpolation of the field quantity Fm from the mesh to the particle locations

(Fp).

Fp =
M∑

m=1

R(xp − xm)Fm, , p = 1, . . . , N , (2.29)

where Q and R are interpolation functions, e.g. the kernel M’4 as defined in Eq.(2.21).

The accuracy of the method depends on the smoothness of U and F, on the interpolation

function, and on the discretization scheme employed for the solution of the field equa-

tions. To achieve high accuracy, the interpolation functions Q and R must be smooth to

minimize local errors, and conserve the moments of the interpolated quantity to minimize

far-field errors. In addition, it is necessary that Q is at least of the same order of accuracy

as R, to avoid spurious forces [84]. This can be easily achieved by selecting the same

type of interpolation, W , for both operations: Q = R = W .

2.6 Initial and Boundary Conditions

Initial and boundary conditions are imposed with the governing equations to achieve a

well-posed problem. The initial conditions are usually prescribed functions that describe

the field quantities evolved in the governing equations. The initial field distributions de-

termine the initial set of particle attributes.

Homogeneous boundary conditions can be solve by particle images in the case of flat

boundaries compared to the core size of the mollification kernel. This method was devel-

oped for PSE and consists of placing mirror particles in an neighborhood of the particles

outside of the simulation domain. Thus, the mollified derivative of Eq.(2.20) for example

becomes

〈
DβΦ

〉

p
=
∑

q

vq (Φq − Φp)
(
Dβζε(xp − xq) ± Dβζε(xp + xq)

)
, (2.30)

where the positive sign between the kernel functions invokes a zero-flux Neumann bound-

ary condition and the negative sign a Dirichlet boundary condition.

2.6. INITIAL AND BOUNDARY CONDITIONS 21

For inhomogeneous boundary conditions the particle attribute need to be adjusted in the

vicinity of the boundary [99].

Alternatively, the use of ghost particle is commonly wide spread in association with

the SPH methodology introduced by Takeda et al. [162]. Ghost particles reside outside

the computational domain and their attributes are extrapolated such that the boundary

condition is satisfied.

Randles et al. [130] presented a normalization technique for handling derivatives with-

out using ghost particles. This method is particularly applied in solid mechanics solved by

smoothed particles and has the same effect has the normalization presented in Eqs.(2.11)

and (2.20).

Chapter 3

Particle Level Set Method

3.1 Introduction

The accurate and efficient simulation of interface evolution is of fundamental importance

for a wide range of problems ranging from multi-phase flows and combustion to virtual

surgery environments and computer animation. In these applications we can distinguish

two broad classes of computational methods being used to describe the evolution of inter-

faces, namely: interface capturing and interface tracking methods.

In capturing methods, the interface is determined by an implicit function that is advected

in the computational domain. The most common interface capturing methods include Vol-

ume of Fluid [83] and Level Set methods [120, 145]. Volume of Fluid (VOF) methods

are inherently linked to fluid mechanics problems and to Eulerian discretizations of the

flow equations. They have enjoyed significant success in simulations of free surface and

multiphase flow phenomena [141]. Level Set (LS) methods [148, 118, 147, 119, 64, 149]

employ an implicit function to describe the advection of the interface and are well suited

to problems where interfaces undergo extremely large topological changes. They have

been applied with significant success to problems ranging from fluid mechanics to image

processing and materials science (see the textbooks [147, 118] and references therein).

The LS equation is commonly solved in an Eulerian framework by using high order finite

difference methods, such as the fifth-order accurate Hamilton -Jacobi WENO schemes

[25]. The accuracy of interface capturing schemes is reduced when the interface devel-

ops structures whose length scales are smaller than those afforded by the Eulerian mesh

24 CHAPTER 3. PARTICLE LEVEL SET METHOD

[134]. In addition time step limitations are introduced by the associated CFL condition

for the discretization of the advection term. A number of remedies have been proposed to

rectify this situation, such as high order ENO/WENO approximations, semi-Lagrangian

techniques [156] and hybrid particle-level set techniques as introduced in [57]. In the

latter work, the cells near the interface are seeded with marker particles in order to obtain

sub-grid scale accuracy. This hybrid method has been shown to provide superior results

for a number of benchmark problems in two and three dimensions. However, a number

of open issues remain regarding the manner in which particles are introduced as well as

the number of particles necessary to obtain a prescribed accuracy.

Tracking methods solve the interface evolution equation in a Lagrangian fashion, for ex-

ample by evolving marker particles. The origin of tracking methods can be traced to the

1930’s and to calculations made by hand by Rosenhead [135] to describe the evolution of

a vortex sheet in incompressible flows. These calculations have been followed 40 years

later by the introduction of vortex methods [36] and the method of contour dynamics

[187]. A fundamental problem of Lagrangian methods is the distortion of the locations

of the computational elements resulting in an inaccurate description of the interface. A

regularisation procedure is necessary in order to compensate for this deffect and to main-

tain the accuracy of the method. In the context of LS methods rather ad-hoc procedures,

such as particle insertion and deletion, have been proposed and in [57] it is argued that no

a-priori way exists that may help in building a regularisation of these methods.

In this thesis we consider a novel particle level set method that overcomes the difficul-

ties associated with the Lagrangian formulation of level set equations, using techniques

originally developed for vortex particle methods. In the particle framework the level set

function is mollified using suitable kernel functions and it is subsequently discretized us-

ing particles as quadrature points. The level set information can be recovered by a linear

superposition of the quantities carried by the individual particles. The accuracy of the

method requires that particles overlap (i.e. their distance is smaller than their core size) at

all times [41]. This is ensured by a remeshing procedure as it was first introduced in the

context of vortex particle methods [98].

3.2. LEVEL SET METHOD 25

The method enjoys the advantages of particle methods such as adaptivity and uncon-

ditional stability for the advection of the computational elements. The description of

the level set function as a linear superposition of individual particle functions enables

straightforward computations of interface normals and curvatures. This enables compu-

tations with curvature induced motion of the interface. In addition the simplicity of the

method allows real time simulations involving the cutting and reconnection of interfaces.

The outline of the this chapter is as follows: In Section 3.2, we describe the the level

set method followed by its particle representation in Section 3.3. The remeshing of the

particles as well as the reinitialisation of the level set function is discussed in Section 4. In

Section 3.5, we present the validation of our method by considering two and three dimen-

sion benchmark problems. Section 3.6 and 3.7 illustrates its use in microchip fabrication

simulations and in virtual surgery environments, respectively.

3.2 Level Set Method

The Level Set method [120, 145] defines an interface Γ(t) as the zero level set of a high

dimensional, scalar function Φ(x, t) : R
3 → R:

Γ(t) = {x ∈ Ω : Φ(x, t) = 0} , (3.1)

where Ω is the computational domain. The level set function has the following properties:

Φ(x, t) > 0, x ∈ Ω̃

Φ(x, t) ≤ 0, x /∈ Ω̃, (3.2)

where Ω̃ ⊂ Ω is an open region bounded by Γ. The motion of the interface is driven by a

velocity field u(x, t) as:

∂Φ

∂t
+ u · ∇Φ = 0 for t > 0, (3.3)

Φ(x, 0) = Φ0(x). (3.4)

The specific form of the velocity field depends on the problem under consideration.

26 CHAPTER 3. PARTICLE LEVEL SET METHOD

The function Φ0 is usually chosen as the signed distance to the interface such that

|∇Φ| = 1. However, during its evolution, the level set function Φ(t) can lose the prop-

erty of being the distance function [158]. Reinitialization schemes such as fast marching

methods have been introduced [145, 146] in order to maintain this property. Usually the

evolution of the level set function is computed using grid-based methods and the spatial

derivatives to determine the surface normal and curvature (cf. Eq. (3.6) and (3.7)) are

calculated by finite difference schemes [147].

Alternatively the level set equation can be expressed in a Lagrangian framework using

the material derivative D
Dt

= ∂
∂t

+ u · ∇ as

DΦ

Dt
= 0 (3.5)

dx

dt
= u,

where x denotes the characteristics of the equation. The Lagrangian description of the

level set equation is utilised in interface tracking methods. These methods encounter

difficulties when singularities are formed during the evolution of the interface and need

to be complemented with suitable regularisation procedures [145] in order to recover

a desired weak solution. In this work this regularisation is performed by a remeshing

procedure (see Section 2.4).

The unit normal and the curvature of the interface can be evaluated based on the level

set function by

n =
∇Φ

|∇Φ| (3.6)

κ = ∇ · ∇Φ

|∇Φ| (3.7)

The calculation of interface normals and curvature involves the computation of gradients

of the level set function which is achieved on the mesh in grid based methods, whereas

in the present particle methods they are calculated by taking suitable derivatives of the

mollification kernels (see Section 2.3).

3.3. PARTICLE REPRESENTATION OF LEVEL SETS 27

3.3 Particle Representation of Level Sets

We consider two descriptions of level set functions, namely: the signed distance function

and the color function.

The signed distance function (SDF) is defined by Eq. (3.2) along with the constraint that

|∇Φ(x, t)| = 1. (3.8)

The absolute value of the SDF measures the distance to the interface and the sign of the

function changes when crossing the interface.

The color function (CF) [113] is defined by a different characteristic constant on each

subdomain separated by the interface. The CF used in this work is :

Φ(x, t) = 1, x ∈ Ω̃ (3.9)

Φ(x, t) = 0, x /∈ Ω̃, (3.10)

where Ω̃ ⊂ Ω is an open region bounded by the interface Γ.

In level set methods the SDF approach can be used for computing interface quantities

such as surface tension. However, in cases where the distance information is not neces-

sary, use of the CF can result in significant computational savings.

3.4 Lagrangian Particle Level Set

In the proposed Lagrangian method the evolution of the LS function Φ amounts to evolv-

ing the particles on which it is discretised. The particle position xp, volume vp and level

set value Φp, evolve by the following system of ordinary differential equations derived

from Eq. (3.3):

dΦp

dt
= 0

dvp

dt
= 〈∇ · u〉p vp

dxp

dt
= up (3.11)

28 CHAPTER 3. PARTICLE LEVEL SET METHOD

where 〈�〉p denotes the derivative approximation on a particle p (cf. Eq. (2.20)).

An immediate implication of the Lagrangian description is that simulation of solid body

rotation almost exact, but for the introduction of errors introduced by the particle initiali-

sation and by the accuracy of the time integration. The spatial derivatives used in Eq. (3.6)

and Eq. (3.7) are computed according to the superposition over all particles of Eq. (2.20)).

3.4.1 Reinitialization for Particle Level Sets

During its evolution, the level set function usually ceases to be the signed distance func-

tion. Techniques such as fast marching methods [34, 148, 145] and re-distancing algo-

rithms [157] have been introduced in order to maintain this property by reinitializing the

level set function.

A prerequisite for applying techniques such as the fast marching method is the regu-

larity of the computational elements. This reinitialisation is straighforward when using

an Eulerian description of the level set methods but , in general, it is not possible for an

arbitrary particle distribution. Remeshing, however, offers the benefit that it distributes

the particles on a cartesian mesh and it allows the implementation of the fast marching

method.

Remeshing also enables the use of the level set redistancing algorithm introduced by

Sussman [157] by solving the following equation on the regularized particle locations:

Φt = sign(Φ0) (1 − |∇Φ|) , Φ(x, 0) = Φ0(x) for t → ∞. (3.12)

The computational effort of this scheme can be significantly high when the time integra-

tion of Eq. (3.12) requires a small time step to ensure the convergence of the solution.

An alternative scheme, suited for particle methods as it does not require that particles

are distributed on a regular mesh, was developed based on the first order approximation

of the derivative
∂Φ(x,t)

∂x
= Φ(x,t)−Φ(x0,t)

x−x0
where x0 is the position on the interface that

minimizes |x−x0|. Reformulation of this first-order accurate equation leads to a first order

3.4. LAGRANGIAN PARTICLE LEVEL SET 29

approximation of the distance to the interface that can be used in turn for reinitialization:

Φnew(x, t) = |x − x0| =

∣
∣
∣
∣
∣

Φold(x, t) − Φold(x0, t)
∂Φold(x,t)

∂x

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

Φold(x, t)
∂Φold(x,t)

∂x

∣
∣
∣
∣
∣
. (3.13)

The approximation of the gradient of the level set that can be obtained on the particle

locations using Eq. (2.20). We wish to mention here that the scheme was first proposed

independently by Cottet [43] while we have also been recently aware of a similar work in

[56].

We compare these schemes on the evolution of a one dimensional signed distance func-

tion. This function evolves with a non-uniform velocity field leading to loss of its signed

distance property (Fig. 3.1). The Taylor series re-distancing of Eq. 3.13 is computation-

ally efficient and it maintains the signed distance property very close to the interface

(within two particle spacing) but fails in regions further away from the interface as high

order derivatives become important. The redistancing scheme of [157], provides a good

reconstruction within five iterations. The fast marching method yields the best results for

the longer part of the domain and is overall the most efficient method in this test case. In

the remaining part of this study we use the fast marching method for the re-initialisation.

3.4.2 Fast Marching Method

We base our implementation of the fast marching method on the work of Sethian [146]

and Adalsteinsson et al. [2].

The fast marching method provides the numerical solution of the Eikonal equation

|∇d(x, y, z)| = F (x, y, z). (3.14)

With the assumption of F = 1 and d = 0 on an interface, the solution of Eikonal equa-

tion describes the signed distance to the interface. A convenient upwind finite difference

approximation of Eq.(3.14) is given by

[
(Dm,xd)2 + (Dm,yd)2 + (Dm,zd)2

]1/2
= F (x, y, z), (3.15)

30 CHAPTER 3. PARTICLE LEVEL SET METHOD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Φ
(x

)

Figure 3.1: Comparison of the reinitialization methods in one dimension. A distorted signed-

distance function (dotted line) is reinitialized by a Taylor series redistancing algorithm (Eq. (3.13))

(dash-dot line), the redistancing algorithm [157] (dashed line) and the fast marching method [147]

(solid line)

where Dm,x, Dm,y and Dm,z denote differential operators defined by Dm,ld =

max
(
D−l

ijkd − D+l
ijkd, 0

)
. The forward and backward operators D−l and D+l are finite

difference approximations of first order accuracy.

Consider a two-dimensional version of the Eikonal equation (cf. Eq.(3.14)), where a

set of boundary values is known at the upwind side (Fig. 3.2). The set of points neigh-

boring the set of accepted values form the narrow band of trial values evaluated based on

Eq.(3.15). The remaining set of points at the downwind side carry ’far away values’ that

are not defined. The algorithm of the fast marching method bases on the observation that

the smallest value in the narrow band of trial values must be correct. The speed of the

algorithm comes from a heapsort technique to efficiently locate the smallest element in

the set ’Trial’.

The fast marching algorithm can be described by: First, tag points with the initial con-

ditions as ’Alive’, tag as ’Close’ all points one grid point away and tag as ’Far’ all other

grid points. The loop sweeping the computational domain is as follows

3.4. LAGRANGIAN PARTICLE LEVEL SET 31

Figure 3.2: Typical setup for the upwind computation of accepted values in the fast marching

method (in courtesy of Sethian [146])

1. Let Trial be the point in Close with the smallest value of d.

2. Tag as Close all neighbors of Trial that are not Alive: If the neighbor is in Far,

remove it from that list and add it to the set Close.

3. Recompute the values of d at all Close neighbors of Trial by solving the piecewise

quadratic equation according to Eq.(3.15).

4. Add the point Trial to Alive; remove it from Close.

5. Repeat loop until all points are in Alive.

Adalsteinsson et al. [2] illustrate the computation of an estimation for the initial set of

level set values to start the algorithm with. We extend their technique [2] in the case a

where only one of the neighboring points of the considered close point is on the other

side of the zero level set (Fig. 3.3). In this case, we do not define the level set value as

the distance to the intersection point on the line connecting the two grid points 1 and 2,

but we rescale the distance according to the surface normal as estimated by a central finite

difference scheme. This approach ensures that the difference in Φ of the grid points 1 and

2 in Fig. 3.3 is equal to the quotient h/ny, where h is the grid spacing and ny a projection

of the local surface normal as shown in Fig. 3.3. Moreover, we do not implement the fast

32 CHAPTER 3. PARTICLE LEVEL SET METHOD

marching method separately for points inside and outside the front, but instead we use the

method based on the initial set of points inside the front to both directions. This ensures

that the gradient of Φ converges to one within the first order accuracy allowed by the fast

marching method.

1

2

h

n

yn

��
��
��

��
��
��

��
��
��

��
��
��

��

������������������������������

������������������������������

������������������������������

������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.3: Extension to initial setting of Adalsteinsson [2]: the difference in the level set values

of points 1 and 2 is not assumed to be equal to the grid spacing h but to the quotient h/ny where

ny is a projection of the local interface normal n.

3.4.3 Implementation

In order to reduce the computational cost of the level set method the computational el-

ements are limited to narrow bands around the interface [145]. This concept is readily

implemented in the present method due to the local support of the underlying particle

based functions. The remeshing provides a consistent process by which particles near the

interface of the level set are being introduced while particles away from the interface are

eliminated. The particles carry an indicator function to define the domain of the narrow

band.

The equations for the particle locations and volumes (Eq. (3.3)) are integrated using a

Runge-Kutta method of 4th order in all cases. To reduce the computational cost involved

with the reconstruction of the level set function from the individual particles (Eq. (2.7))

we use Linked List [84] and Verlet Lists [172] (see also Section 6.5). The overall cost of

the method scales linearly with the number of active particles. For 105 particles one time

3.5. RESULTS 33

step of the method implemented in FORTRAN 90 requires 1.2 (in 2D) and 2.0 (in 3D)

CPU seconds on an Apple Powerbook with a G4 processor of 1.25 GHz.

3.5 Results

We present results from the application of the method on a number of benchmark prob-

lems in two and three dimensions including pure convection and curvature induced mo-

tion. The method is compared quantitatively with existing grid based and hybrid grid-

particle level set algorithms as reported in [57, 163, 35, 143]. The feasibility of the method

as a tool for real time cutting procedures in virtual surgery environments is discussed.

3.5.1 Zalesak’s Disk and Zalesak’s Sphere

We demonstrate first the advantages of the proposed method on the rigid body rotation of

the Zalesak’s disk in a constant vorticity field [188]. Initially, a slotted disk is centered at

(0.5, 0.75) with a radius of 0.15, a width of 0.05, and a slot length of 0.25. The velocity

field is given by

v(x) =
π

314




0.5 − y

x − 0.5



 (3.16)

The disk completes one revolution in the unit domain every 628 time units. This test

problem can identify diffusion errors of an interface-capturing method. In the proposed

method, since the interface is driven by a rigid body rotation there is no particle distortion

and hence no need for remeshing.

We present the solution after one revolution for the CF and the SDF description of

the level sets, cf. Fig. 3.4. For the the CF approach, the present method requires only

591 particles uniformly distributed within the disk whereas the narrow band of the SDF

initialisation involves 802 particles. The numerical errors result from the time integration

scheme which is of 4th order, and the interpolation kernel used in the initialisation, which

is of 2nd order. Fig. 3.5 shows that the error of area computation indeed converges with

34 CHAPTER 3. PARTICLE LEVEL SET METHOD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
y

Figure 3.4: The Zalesak’s disk after one revolution. The comparison of level set solutions using

color function with particle positions (left, 591 particles) and signed distance function with a

narrow band particles (right, 802 particles).

2nd order. The number of active particles are listed in Table 3.1. Note that the numbers

for the particles being used along with the mesh in the hybrid methods are not reported

[57] and those reported herein represent estimates with an average of 16 particles per

cell. The results indicate that the present method requires on the average about five times

less computational elements to achieve the same accuracy as the hybrid particle-level set

approach of Enright et al. [57] when comparing the ratio between numerical error and

number of computational elements for each resolution.

As a three dimensional test case we consider a slotted sphere, corresponding to the two

dimensional Zalesak disk problem. The sphere has a radius of 0.15 and placed at (0.5,

0.75, 0.5) in a unit domain. The slot has a width of 0.05 and and length of 0.125. It rotates

in the z=0.5 plane around the point (0.5, 0.5, 0.5).

3.5. RESULTS 35

Table 3.1: Absolute relative error of the area (exact 0.05822) in the slotted disk case using different

Level Set Methods (LSM)

Spacing Particle LSM Hybrid Particle LSM [57] LSM [57]

Error Particles Error Aux. Particles* Error

Color function

1/50 4.3% 153 14.9% 3328 100%

1/100 1.3% 591 0.3% 12864 5.3%

1/300 0.2% 5252 - - -

1/500 0.1% 14574 - - -

Signed distance function

1/50 1.1% 208 14.9% 3328 100%

1/100 0.3% 804 0.3% 12864 5.3%

1/300 0.03% 7312 - - -

1/500 0.01% 20332 - - -

*estimated under the assumption of 16 auxiliary particles per narrow band cell

36 CHAPTER 3. PARTICLE LEVEL SET METHOD

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

Particle spacing

R
e
la

ti
v
e
 e

rr
o
r

Figure 3.5: Comparison of the relative error of the area using color function (dashed line) and

level sets (solid line) after one revolution to 2nd convergence (dotted line). The error matches with

the initial error.

3.5. RESULTS 37

Figure 3.6: Zalesak’s Sphere: level set solution using 100x100x100 cells (in courtesy of Enright

et al. [57]).

38 CHAPTER 3. PARTICLE LEVEL SET METHOD

Figure 3.7: Zalesak’s Sphere: particle level set solution of Enright et al. [57] using 100x100x100

cells and subscale particles.

3.5. RESULTS 39

The velocity field describes a rigid body rotation evolving over 628 time units per revo-

lution

v(x) =
π

314








0.5 − y

x − 0.5

0








(3.17)

As reported in [57] the level set solution with 100x100x100 cells (Fig. 3.6) suffers from

numerical diffusion which can be alleviated by the hybrid particle level set method intro-

duced in [57] as shown in Fig. 3.7.

In the present method the slotted sphere maintains its sharp features (Fig. 3.8) as the par-

ticles follow the rigid body rotation, without any numerical diffusion effects, associated

with the advection of the level sets. Fig. 3.8 shows that the Lagrangian particle level set

method performs very well on this problem. Since the particle level set function remains

a SDF there is no need for reinitialization.

3.5.2 Single Vortex Flow

To test the scheme on resolving thin filaments as they occur in stretching and tearing flows

we consider the single vortex flow as introduced by Bell et al. [16]. The initial interface, a

circle placed at (0.5, 0.75) with radius 0.15, is shown in Fig. 3.9 together with the velocity

field:

v(x) = 2




− sin2 (πx) sin (πy) cos (πy)

sin2 (πy) sin (πx) cos (πx)



 (3.18)

The velocity field stretches the circle into a long filamentary structure which wraps itself

around the center of the unit domain. In this case the particles get very distorted by the

flow and the remeshing procedure becomes an essential part of the scheme. The threshold

for remeshing in our simulations is set to ∆H = 10−7. As a result, the remeshing scheme

is applied every timestep. Fig. 3.10 shows the final interface at t=3 after 90 timesteps

when 16384 particles are used to capture the interface by a CF. When the particle are not

remeshed, they soon cease to overlap and the smoothness of the interface gets completely

40 CHAPTER 3. PARTICLE LEVEL SET METHOD

Figure 3.8: Zalesak’s sphere during one revolution solved by Lagrangian particle level sets (24351

particles).

lost and the interface breaks apart as seen in Fig. 3.10 (left). Remeshing ensures that

the particle overlap and the interface maintains its smooth features (cf. Fig. 3.10 (right)).

Nevertheless in underresolved regions, particles do not describe accurately the level sets

and the interface vanishes.

Using the SDF approach for initialization has similar results (Fig. 3.11). The remeshing

scheme recovers the thin filament very well until the tail becomes underresolved. In both

cases, the tail evolution is captured for much longer times when compared to the level

set solution obtained by an Eulerian scheme (Fig. 3.13). Reinitialization is applied every

20 remeshing steps. Our results indicate that the frequency of reinitialisation can affect

the interface when using the SDF description when applied too often (e.g. at every time

step in conjuction with remeshing). When reinitialization is used less often the captured

interface is better recovered but the signed distance property of the level set function is

3.5. RESULTS 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.9: Single Vortex Flow : Initial interface with velocity field.

not guaranteed any more. Fig. 3.12 show results when the particle spacing is equal to

10−6 and demonstrate that the CF and the SDF approach converge to the same interface

reconstruction. The interface matches nicely with the high resolution front track method

as shown in Fig. 3.13. The quality of the interface is also comparable with the hybrid

particle level set method of Enright et al. [57]. In their work they used 128x128 cells

along with a number of marker particles seeding randomly the area around the interface.

The marker particles were used to track the interface and perform an error correction

by providing subgrid resolution. The present Lagrangian particle method is similar to

the hybrid particle method as particles are being implemented to adaptively enhance the

evolution of the interface. However, the methods differ as in the present work particles

are used also to describe the Lagrangian formulation of the level sets. In addition, in the

present method, remeshing is utilised to introduce, in a consistent manner, particles in

areas where the particle distribution gets non-uniform, in order to maintain the accuracy

of the particle description and to regularize the evolution of the particles.

42 CHAPTER 3. PARTICLE LEVEL SET METHOD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.10: Zero level set of the single vortex problem at t=3 using Lagrangian particle level sets

with a color function having remeshing suppressed (left, 1160 particles) and frequently remeshed

(right, 3131 particles).

In order to quantify the error of the method the velocity field is reversed by multiplying

its value by cos(πt/T) where T is the time of one period. For T=8 the maximal stretched

interface is similar to the one in Fig. 3.12. The final interface at T=8 should match with

the initial state. Table 3.2 shows the errors of the method in reconstructing the area as

compared to the analytical solution. The errors indicate close to second order convergence

when using the SDF without reinitialization and approximately first order convergence

with reinitialization and when using the CF approach (Fig. 3.14). This implies that the

error convergence behavior of the SDF approach with reinitialization results from the

reinitialization scheme that shows first order accuracy. In general, the SDF approach

delivers more accurate results than the CF approach. Figure 3.15 shows a selected number

of the final interfaces of this problem. Note that the interface reconstruction severely

suffers from the reinitialization in simulations using relatively low resolution (i.e. when h

is larger than 1/128).

The number of particle varies over time as remeshing creates a new set of particles each

time it is applied. The number of particles for the time-reversed single vortex problem

3.5. RESULTS 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
y

Figure 3.11: Zero level set of the single vortex problemat t=3 using Lagrangian particle level sets

initialized by a signed distance function using remeshing only (left, 1860 Particles) and remeshing

and reinitialization of the signed distance function (right, 4161 particles).

typically increases in the first half of the time period as the interface stretches out and

decreases in the last third of the time period, cf. Fig. 3.16.

44 CHAPTER 3. PARTICLE LEVEL SET METHOD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.12: Zero level set of the single vortex problem at t=3 using Lagrangian particle level sets

initialized by a color function (left, 70946 particles) and a signed distance function (right, 55914

particles).

Figure 3.13: Zero level set at t=3 from Enright et al. [57]: Particle level set method 128x128 cells

with subscale particles (blue), Level set method (red), high resolution front track method (green).

3.5. RESULTS 45

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Particle spacing

R
e
la

ti
v
e
 e

rr
o
r

Figure 3.14: Single Vortex Flow : Comparison of the relative error of the area at t = 8 using

CF(dashed line), and SDF level sets without (solid line) and with (dash-dot line) reinitialization.

Dotted Lines showing first- and second-order scaling.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Figure 3.15: Time reversed single vortex problem. Zero level set at t=8 using Lagrangian particle

level sets with a particle spacing h=1/128 (left) and h=1/1000 (right) using a color function having

remeshing suppressed (thick solid line) and remeshed (dashed line) and using a signed distance

function without (dash-dot line) and with reinitialization (thin solid line).

46 CHAPTER 3. PARTICLE LEVEL SET METHOD

Table 3.2: Absolute relative error of the area (exact 0.07069) in the single vortex problem (240

time steps) using different Level Set Methods (LSM)

Spacing Particle LSM Hybrid Particle LSM [57] LSM [57]

Error Particles (t = 0) Error Aux. Particles* (t = 0) Error

Color function

1/64 9.0% 284 1.8% 3776 100%

1/128 14.2% 1160 0.7% 15040 39.8%

1/256 6.8% 4628 0.4% 59072 10.3%

1/1000 1.8% 70688 - - -

Signed distance function without reinitialization

1/64 44.1% 236 - - -

1/128 2.6% 940 - - -

1/256 0.8% 3692 - - -

1/1000 0.003% 55270 - - -

Signed distance function with reinitialization

1/64 17.9% 236 1.8% 3776 100%

1/128 4.2% 940 0.7% 15040 39.8%

1/256 2.1% 3692 0.4% 59072 10.3%

1/1000 2.0% 56536 - - -

*estimated under the assumption of 16 auxiliary particles per narrow band cell

3.5. RESULTS 47

0 1 2 3 4 5 6 7 8
1000

1500

2000

2500

3000

3500

Time t

N
u

m
b

e
r

o
f

p
a

rt
ic

le
s
 N

p

Figure 3.16: Time-reversed single vortex problem. The Number of particle versus time when using

a color function and a particle spacing of h=1/128.

48 CHAPTER 3. PARTICLE LEVEL SET METHOD

3.5.3 Deformation Test Case in Three Dimensions

Figure 3.17: Deformation test case: level set solution using 100x100x100 cells (from Enright

et al. [57].

To demonstrate the ability of the method to capture three dimensional deformations we

consider a divergence-free velocity profile proposed by LeVeque [101].

v(x) =








2 sin2 (πx) sin (2πy) sin (2πz)

− sin (2πx) sin2 (πy) sin (2πz)

− sin (2πx) sin (2πy) sin2 (πz) .








(3.19)

A sphere of radius 0.15 is placed within a unit computational domain at (0.35, 0.35,

0.35). At t=2 (after 75 time steps) the velocity field is reversed. Enright et al. [57]

presented a level set solution and a hybrid particle level set solution to this problem,

for parts of the interface that were underresolved as shown in Fig. 3.17 and Fig.3.18.

The cell size of these solutions (∆x = 0.01) corresponds to the particle spacing of one

of our simulations. For the same grid size and particle spacing the hybrid method and

the present Lagrangian particle method, respectively, do not to resolve the thin interface.

Note however that the present method involves a fraction of computational elements when

3.5. RESULTS 49

Figure 3.18: Deformation test case: particle level set solution of Enright et al. [57] using

100x100x100 cells and subscale particles.

compared to the hybrid method. Both methods give far better results than the purely

Eulerian level set method which seems to fail severely on this problem 3.17. Figs. 3.19

and 3.20 show the Lagrangian particle level set solution with and without remeshing.

Initially, particles are initialised using a CF. Particles carrying a color value of less than

a small threshold (2.5e-2) are eliminated in further steps. Fig. 3.19 shows the simulation

of the sphere when the particles are undergoing pure advectionwithout been remeshed. In

this case the surface quickly becomes very rough and it is ruptured very early. Since the

particles are only advected, the final surface after evolving for one period returns perfectly

to the initial condition. Remeshing of the particles every second timestep improves the

smoothness of the surface and delays the rupture as shown in Fig. 3.20. However, in

underresolved regions the interface disappears. The Lagrangian particle level set method

is able to recover from this rupture and provides a final smooth surface that shows small

spurious features in the y = 0.5 -plane but overall recovers well the initial condition. The

hybrid particle level set method (Fig.3.18) results in a better final result as additional

subscale particles are utilised, but it still cannot resolve the thin interface at the maximal

50 CHAPTER 3. PARTICLE LEVEL SET METHOD

stretching. Simulations using larger numbers of particles were performed in order to find

the resolution that avoids the disappearance of the interface at its maximum stretching.

As it is shown in Fig. 3.21 this is achieved using about 170,000 particles with a spacing

that would correspond to an Eulerian mesh of 200x200x200 for a total of 8,000,000 grid

points.

Figure 3.19: Deformation test case: particle level set solution without remeshing based on a color

function (14054 particles). Lagrangian particle level set solution without remeshing at t=0, 15

∆s, 30 ∆s, 40 ∆s, 50 ∆s, 60 ∆s, 70 ∆s, 75 ∆s, 80 ∆s, 100 ∆s, 120 ∆s 150 ∆s, where

∆s = 2/150.

3.5. RESULTS 51

Figure 3.20: Deformation test case: Lagrangian particle level set solution based on a color func-

tion (minimum 14054 particles, maximum 30739 particles). Lagrangian particle level set solution

with remeshing at t=0, 15 ∆s, 30 ∆s, 40 ∆s, 50 ∆s, 60 ∆s, 70 ∆s, 75 ∆s, 80 ∆s, 100 ∆s, 120

∆s 150 ∆s, where ∆s = 2/150.

52 CHAPTER 3. PARTICLE LEVEL SET METHOD

Figure 3.21: Effect of the resolution on the surface at t=1: h = 1/100, 29073 particles (left),

h=1/160, 94033 particles (middle), and h=1/200, 169500 particles (right)

3.5.4 Flow under Mean Curvature

The particle description of the Level Set can be extended to advection determined by

mean curvature of the interface as:

∂Φ

∂t
− κ |∇Φ| = 0, (3.20)

where κ is the curvature as defined by Eq. (3.7). The computation of spatial derivatives on

particle locations makes use of the approximations described in Eq. (2.20). We determine

the accuracy of the curvature evaluation by computing the curvature of an ellisoid with

main axes’ length of a = 0.1, b = 0.2, c = 0.2 and comparing it to the analytical solution.

The L∞ norm of error is shown in Fig. 3.22. The error of the SDF description converges

with the 2nd order of the interpolation kernel while the CF description is less accurate.

To investigate the accuracy of our method in resolving interface normals using Eq. (3.6),

we present the L∞-error of the normal at a circular interface with radius R in terms of R/ε

where ε is the characteristic length of the kernel (Fig. 3.23). We observe close to second

order convergence for the SDF description while sublinear convergence is observed for

the CF description.

In order to further validate our method on the computation of normals, We implement

the SDF description in order to track an anisotropic evolution of an interface as proposed

by Sethian et al. [144]. The anisotropic speed function uA of this test case is fourfold

3.5. RESULTS 53

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

Particle spacing h

M
a

x
im

a
l
re

la
ti
v
e

 e
rr

o
r

Figure 3.22: Convergence of the mean curvature of on the surface of ellipsoid based on the color

function (dashed line) and signed distance function (bold line).

(kA = 4) and defined by

uA = 1 − εC (1 − cos (kA (θ + θ0)))κ. (3.21)

where κ is the curvature and εC is set to 0.25. Fig. 3.24 shows the interface evolution for

the phase angle θ0 = 0 (left) and θ0 = π/4 (right) using about 3000 particles. In both

cases, the speed function transforms the circle into a square. In the first case, the preferred

modes of growth are along the x- and y-axes, whereas in the second case the preferred

modes of growth are along the diagonals. The corners turn out sharper in the first case.

These results compare well with the results of Sethian et al. [144] using finite difference

schemes.

We simulate the front evolution of an H-shape contour using Runge Kutta 4th order

with a timestep of 10−4 and a particle spacing of 10−2. Grayson [68] showed that all

simple close curves flowing under curvature shrink to a point. The H-shaped contour

is is progressively becoming a shrinking ellipsoid. We compare with the results of an

Adaptive Mesh Redistibution (AMR) method [163] in Fig. 3.25. The effective resolution

of the AMR is comparable to the resolution of the particle simulation. The two solutions

54 CHAPTER 3. PARTICLE LEVEL SET METHOD

5 10 25 50 100
10

−4

10
−3

10
−2

10
−1

10
0

R/ε

M
a
x
im

a
l
re

la
ti
v
e
 e

rr
o
r

Figure 3.23: Convergence of the interface normals computed on a circle for the SDF (solid line

with markers) and CF description (dashed line with markers).

match very well in the first 50 time steps and up to t = 5 · 10−3. The interfaces differ

slightly at later time steps after the interface velocity has decayed significantly. As the

analytical solution for this problem is not available we cannot judge which solution is

more accurate.

To demonstrate the performance in three dimensions we simulate the collapse of a

dumbbell that is a well known curvature flow example [35, 143] as it exposes a singu-

larity. The mean curvature flow pinches off the handle that separates into two pieces,

which continue to shrink and finally vanish. Grayson [69] used this example to show that

non-convex shapes in three dimensions may in fact not shrink to one sphere. The dumb-

bell is made up of two spheres, each of radius 0.3, and connected by a cylindrical handle

of radius 0.15. The x-axis is the axis of symmetry. We choose a particle spacing of 0.097

and a time step of 2 · 10−5. The particles are reinitialized every 10th time step. Fig. 3.26

shows the surface as it appears initially, after shrinkage, when reaching the singularity

and after the break up. The quality of the results is comparable with the finite difference

solution of Sethian [35, 143] as seen in Fig. 3.27. The resolution of domain and the size

of the time step are equivalent in both simulations. The interface is plotted every 100 time

3.5. RESULTS 55

Figure 3.24: Interface evolution under a fourfold anisotropic speed function with phase angle

θ0 = 0 (left) and θ0 = π/4 (right) using about 3000 particles.

steps, later, when approaching the singularity, it is plotted every 10 time steps.

56 CHAPTER 3. PARTICLE LEVEL SET METHOD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.25: Curvature flow of an H-shaped contour at t = 0, 10−3, 3·10−3, 5·10−3, 10·10−3, 14·
10−3 with initially 1701 particles (solid line) in comparison to Tang [163](dashed line).

3.5. RESULTS 57

Figure 3.26: Evolution of a dumbbell shaped surface under mean curvature flow at t =

0, 10−3, 1.1 · 10−3, 1.26 · 10−3 (initially 334616 particles).

Figure 3.27: Evolving dumbbell (left) in comparison to Chopp and Sethian [35] (right).

58 CHAPTER 3. PARTICLE LEVEL SET METHOD

3.6 Simulations of Processes in Microchip Fabrication

In this section, we demonstrate the performance of Particle Level Set Method for the

simulation of the etching and deposition process in the fabrication of microchips (Fig 3.6).

Figure 3.28: Microchip fabrication. Plasma-enhanced chemical vapor deposition.

During the fabrication of microchips a thin layer of crystialline silicon is oxidized, a

photoresist is applied and the wafer is then covered by a pattern mask [147]. The mask

shields part of the light-sensitive photoresist and contains the layout of the underlying cir-

cuit. Light causes the exposed photoresist to polymerize, leaving an unexposed material

that is etched away. Silicon dioxide is then deposited at reduced pressure in a plasma dis-

charge. Finally, thin films such as aluminum are deposited and contacts to the electrical

components and components interconnections are established. These processes produce

considerable changes in the surface profile as it undergoes various effects of etching and

deposition. This problem is known as the ”surface topography problem” in microfab-

rication. The process is controlled by a large number of physical factors including the

visibility of the etching/deposition source from each point of the profile, surface diffu-

sion, and masking profiles.

The evolution of the surface profile [3, 4] can be described by a level set evolution

3.6. SIMULATIONS OF PROCESSES IN MICROCHIP FABRICATION 59

equation similar to Eq.(3.3):

∂Φ

∂t
+ F · ∇Φ = 0 for t > 0, Φ(x, 0) = Φ0(x), (3.22)

where F is the local profile velocity that the depend on the considered process.

We consider the following processes

• Isotropic Etching (FEtch
Iso): Uniform etching, also known as chemical or wet etching

• Directional Etching (FEtch
Dir): Etching from an external source including visibility

effects

• Isotropic Deposition (F
Dep
Iso): Uniform deposition, also known as chemical or wet

deposition

• Directional Deposition (F
Dep
Dir): Deposition from an external source including visi-

bility effects

To demonstrate the performance of the particle level set method we simulate the

processes in a unit cube containing about 33000 particles carrying the level set func-

tion. The time step is 0.0035 using Runge Kutta 2nd order. To obtain the best results the

particles are remeshed and reinitialized every time step.

3.6.1 Isotropic Etching and Deposition

In isotropic etching/deposition, the speed function F of the interface in its normal direction

is independent of the orientation of the interface. In this case, inward pointing sharp

corners are rounded when they etch inwards, and are outward pointing corners remain

sharp when etched (the opposite situation takes place under deposition). This corresponds

to the selection of the correct weak solution to the equations of motion [147].

Under isotropic etching (FEtch
Iso = −1) a cavity expands while the border surrounding

the cavity is moving towards the bottom, , i.e., material is removed from the entire scene

60 CHAPTER 3. PARTICLE LEVEL SET METHOD

(Fig.3.29). The results compare very well with the simulations of Adalsteinsson and

Sethian [4]. In particular, the smoothing effects at the edges match very well.

Figure 3.29: Surface evolution during isotropic etching (left) in comparison with Adalsteinsson

and Sethian [4] (right)

Under isotropic deposition (F
Dep
Iso = 1) a cavity closes off while the border surrounding

the cavity is moving upwards, , i.e., material is added to the entire scene (Fig.3.30). The

results compare well visually to the simulations of Adalsteinsson and Sethian [4] as shown

in Fig. 3.31.

Figure 3.30: Surface evolution during isotropic deposition

Figure 3.31: Surface evolution during isotropic deposition presented by Adalsteinsson and Sethian

[4]

3.6. SIMULATIONS OF PROCESSES IN MICROCHIP FABRICATION 61

3.6.2 Directional Etching and Deposition

In this section, we analyze the outcome of deposition/etching including the effects of

visibility. Let Y (θ) be the yield function, that is the effectiveness of the etching/deposition

process. It is described by a function Y (θ) where θ is the angle between the surface

normal and the direction of the light beam. In the case of pure isotropic deposition, we

have F(θ) = 1, in the case of etching, F(θ) = −1. We choose F(θ) = Y (θ) = cos θ,

i.e. the beam causes the strongest effect when the beam is normal to the surface. Only

regions that are visible from the source are affected.

We consider a cavity under directional etching and deposition where the light beam

direction is (1,−1, 1). During the directional etching process (Fig. 3.32 left) the material

is only removed in lighted regions, whereas shadowed regions remain its shape because

they are unreachable from the light source. The same effect applies to the directional

deposition process (Fig. 3.32 right). However, the lighted part of the cavity is lifted.

The particle simulations are unconditionally stable for the advection as the computa-

tional elements move according to the velocity of the surface. Open issues involve the

consideration of redeposition and reemission. During redeposition the material particles

are expelled during the etching process and attach to the profile at other locations. Ree-

mission describes the process where particle deposited during directional deposition may

to stick to the profile and are re-emitted in the domain.

Figure 3.32: Surface of a cavity under directional etching (left) and deposition (right) in side and

top view.

62 CHAPTER 3. PARTICLE LEVEL SET METHOD

3.7 Virtual Cutting using Lagrangian Particle Level Sets

The simplicity and efficiency of the proposed method enables simulations associated with

virtual cutting of soft biological tissue. We consider a liver topology that was segmented

from image data of the Visible Human Project [114] into a triangular mesh. The graphical

interactivity is provided by the OpenInventor Toolkit during the simulation. The collision

detection is performed by a collision detection library for deformable objects provided by

Heidelberger et al. [79].

3.7.1 OpenInventor Toolkit for interactive 3D Graphics

Open Inventor is an object-oriented toolkit for developing interactive, 3D graphics appli-

cations. It also defines a standard file format for exchanging 3D data among applications

which serves as basis for the Virtual Reality Modeling Language (VRML) standard.

At the programming level, we use the following set of tools for graphics application

development offered by the toolkit:

• A 3D scene database that includes shape, property, group, engine, and sensor ob-

jects, used to create a hierarchical 3D scene.

• A set of manipulators, including handle box and trackball, that allow the user to

interact directly with the scene.

• An Component Library for Xt, including a render area, material editors, viewers

and utility functions used to provide some high-level interactive tasks.

3.7.2 Collision Detection for Deformable Objects

The efficient detection of collision between geometric objects is an essential compo-

nent in interactive simulations. Usually, the objects are triangle meshes with hundreds

of thousands of elements. Thus, to accelerate the computation, spatial data structures like

bounding-boxes and distance fields are commonly used. This structures are generated in

3.7. VIRTUAL CUTTING USING LAGRANGIAN PARTICLE LEVEL SETS 63

a preprocessing step, thus removing the computational burden from the simulation. Al-

though this approach performs very well for rigid objects, it is difficult to employ in cases

where the geometry of the object changes over time. As, for instance, it is the case in a

surgery simulation. Heidelberger et al. [79] present an algorithm based of Layered Depth

Images (LDI) to accelerate collision detection of rigid and deformable objects.

The collision detection algorithm requires a closed triangular mesh of a 3D closed ob-

ject as an input and returns a discrete representation of the intersection volume. The in-

tersection volume provides a Vertex-in-volume test that is used for the collision response

algorithm.

Figure 3.33: Overview in 2D and in 3D. (a) AABB intersection. (b) LDI generation within the

Volume of Interest. (c) Computation of the intersection volume (in courtesy of Heidelberger

et al. [79]).

The collision detection algorithm proceeds in three stages (Fig. 3.33):

Stage 1 uses Axis-Aligned Bounding Box (AABB) to check whether two objects could

overlap or not. This test is highly efficient because of the alignment of the bounding box

axes. If the intersection is empty, the objects do not collide and we can avoid testing the

primitives. If it is not, stages 2 and 3 are applied to the intersection volume (Volume of

Interest).

Stage 2 computes two LDIs, one for each object. The LDI data structure essentially

stores multiple depth values per pixel. Thus, an LDI can be used to approximate the

64 CHAPTER 3. PARTICLE LEVEL SET METHOD

volume of an object. The LDI generation is restricted to the Volume of Interest. The depth

values of the LDI can be seen as 3D scan lines entering or leaving an object, as described

on Figure 3.34. The intersection points are then classified into entry and leaving points.

Likewise, the LDI classifies the Volume of Interest into inside and outside regions.

Figure 3.34: Inside and outside regions for a scan line.

Stage 3 performs the collision detection. Two kinds of operations can be realized with

the resulting LDIs:

• The two LDIs can be combined to compute an intersection volume. The intersection

volume is computed by a pixelwise intersection of the inside regions of both LDIs.

If the resulting intersection is non-empty, a collision is detected. The sum of all

intersections regions forms a discrete representation of the intersection volume.

• Individual vertices can be tested against an LDI. First, the vertices are transformed

into the local coordinate system of the LDI. If the transformed vertex intersect with

an inside region, a collision is detected.

3.7.3 Liver Reconstruction and Collision Response

Based on the a triangular mesh of the liver topology, particles are placed inside the liver

surface and they are assigned values following a CF approach. Fig. 3.35 shows the sur-

face reconstruction of the liver based on 3209 particles together with the medical devices

visualized using the OpenInventor toolkit.

We apply the collision detection algorithm between the medical device and the liver at

each time step. Whenever a medical device collides with one of the particles inside, the

3.7. VIRTUAL CUTTING USING LAGRANGIAN PARTICLE LEVEL SETS 65

Figure 3.35: Liver topology reconstruction using 3209 particles.

contribution of this particle is removed from the superposition of Eq. (2.7) to simulate a

cutting process. Hence reconstruction of the surface is computationally very inexpensive

as the new surface is reconstructed according to:

Φ(x)new = Φ(x)old −
M∑

q

vqΦqζε(x − xq) (3.23)

where M denotes the (small) number of particles detected during the collision process.

The triangular mesh of the surface is evaluated using the marching cube algorithm [103]

and passed to the graphical renderer of OpenInventor.

3.7.4 Results

This algorithm shows high efficiency and enables interactive simulations (Fig. 3.36 and

3.37) when the devices moved into the liver are not thinner than the particle spacing.

We obtain a realistic representation already with a small set of particle as shown in the

sequence of Fig. 3.37. Adaptive insertion of particles having smaller core size is necessary

in order to refine this process and to achieve a better mass conservation.

This approach, however, neglects the mechanical behavior of the liver and is, therefore,

not capable of simulating deformations. In the appendix A, we present a physical ap-

proach to consider the effect of elasticity based on a simplified particle model for elastic

solids.

66 CHAPTER 3. PARTICLE LEVEL SET METHOD

Figure 3.36: Particles assign with a color functions are removed from the superposition in real

time when hit by an instrument.

3.7. VIRTUAL CUTTING USING LAGRANGIAN PARTICLE LEVEL SETS 67

Figure 3.37: Perforation sequence using 950 particles.

Chapter 4

Particle Simulation of Fluids

4.1 Introduction

Fluid dynamics simulation is a classical research field where particle methods, such as

vortex methods [41] and smoothed particle hydrodynamics (SPH) [109], are established

numerical schemes.

SPH is a Lagrangian numerical method introduced by Gingold and Monaghan [65] to

model and simulate problems in continuum physics while circumventing some of limita-

tions of grid-based methods. This method enjoys the properties of Lagrangian schemes,

such as automatic adaptivity and numerical stability. A key aspect is the approximations

of function derivatives based on the particle superposition as presented in Section 2.3.

Chaniotis et al. [29] presented the remeshed SPH (rSPH) method that combines the La-

grangian particle method with a regular remeshing scheme as described in Section 2.4 to

simulate viscous and heat conducting flows.

This chapter presents the particle modeling and simulation of compressible fluid us-

ing rSPH for a compressible vortex ring demonstrating the stability and accuracy of the

method. It furthermore, defines the characteristic numbers relevant for fluid dynamics.

4.2 Governing Equations

A system of differential equations govern the motion of a viscous, compressible medium.

The fundamental system describes the conservation of mass and momentum. The conser-

70 CHAPTER 4. PARTICLE SIMULATION OF FLUIDS

vation equations for a fluid are

Dρ?

Dt
= −ρ?∇ · u? (4.1)

ρ? Du?

Dt
= −∇p? + ∇.τ ? (4.2)

τ ?
ij = µ

(
∂u?

i

∂x?
j

+
∂u?

j

∂x?
i

− 2

3
δij

∂u?
k

∂x?
k

)

(4.3)

where D�
Dt

= ∂�
∂t

+ (u? · ∇)(�) denotes the material derivative, ρ? denotes the density, u?

the velocity, p? the pressure, τ ? the shear stress tensor with the elements τ ?
ij and µ the

viscosity. x?
i are the components of the position, u?

i the components of the velocity where

Einstein’s summation convention must be taken into account.

The system of differential equations Eq.(4.1)-(4.3) is closed with the equation of state

for an ideal gas

p? = ρRT ? (4.4)

where R is the specific gas constant and T ? the temperature. We assume the temperature

T ? = T0 to be constant in space and time. The reference density is ρ0.

The initial condition is described by a density and a velocity field. The inflow boundary

involves a prescribed inlet velocity and a homogeneous Neumann boundary condition for

the pressure. At the outlet, we consider a prescribed outlet pressure and a homogeneous

Neumann boundary condition for the velocity.

4.3 Definition of Non-dimensional Numbers Characterizing the Flow

The Reynolds number of the flow is defined as

Re =
ρ0U0d

µ
, (4.5)

where ρ0 is the characteristic density of fluid, U0 the characteristic velocity, µ the dynamic

viscosity. The characteristic length d is equal to the channel width or the cylinder/sphere

diameter depending on the considered problem.

4.4. NONDIMENSIONAL GOVERNING EQUATIONS 71

The Mach number M is the ratio of the characteristic velocity U0 to the speed of sound

c0

M =
U0

c0
=

U0√
RT0

(4.6)

The drag coefficient is an important characteristic for the energy loss of a flow that is

commonly used to validate flow simulations. It is defined as

Cd =
FD

0.5ρU2
0 A

, (4.7)

where FD, the drag force, is force acting on the body parallel to the main stream direction

and A the reference area. Similar to the drag coefficient the lift coefficient is defined as

CL =
FL

0.5ρU2
0 A

, (4.8)

where FL, the lift force, is the force acting perpendicular to the main stream.

The Strouhal number is defined as the dimensionless frequency of the shedding vortices

St =
fd

U0
, (4.9)

where f is the vortex shedding frequency. This frequency can be obtained using the Fast

Fourier Transform of the lift coefficient.

4.4 Nondimensional Governing Equations

The Navier-Stokes equations (cf. Section 4.2) can be expressed in non-dimensional La-

grangian form using the characteristic flow numbers presented in Section 4.3.

Dρ

Dt
= −ρ∇ · u, (4.10)

and

ρ
Du

Dt
= − 1

M2γ
∇p +

1

Re
∇ · τ, (4.11)

where

p = ρ, (4.12)

72 CHAPTER 4. PARTICLE SIMULATION OF FLUIDS

and the components of the stress tensor τ

τij =
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

. (4.13)

ρ,u, p and τ are non-dimensional variables normalized by their characteristic values.

4.5 Particle Equations

The governing equations (4.10) and (4.11) are discretized using the rSPH approach [29].

In the present implementation, the summations of the rSPH approximation are resorted

to form less summations and the kernel evaluations are replaced by pre-computed look-up

tables in order to obtain a formulation that includes three simple look-up tables Λ1, Λ2,

and Λ3, thus

dmp

dt
= 0

dvp

dt
= vp

∑

q

∆xpq∆upqΛ1vq (4.14)

dup

dt
=

1

M2γ

∑

q

∆xpq∆ppqΛ1vq +
1

3Re

∑

q

[
Λ3 +

(
∆xpq∆xT

pq

)
Λ2

]
∆upqvq.

The look-up tables Λi are sampled at the distance ||∆xpq|| between particles p and q,

where ∆xpq denotes the vector of the Cartesian distance between the particles, ∆upq the

vector of the velocity difference, and ∆ppq the pressure difference. The look-up table

values are pre-computed as

Λ1 =
1

||∆xpq||h
dW (r, h)

dr

∣
∣
∣
∣
r=||∆xpq||

, (4.15)

Λ2 = − 1

||∆xpq||3h
dW (r, h)

dr

∣
∣
∣
∣
r=||∆xpq||

− 1

||∆xpq||3h
d2W (r, h)

dr2

∣
∣
∣
∣
r=||∆xpq||

(4.16)

Λ3 = 10Λ1 + ||∆xpq||2Λ2, (4.17)

where W (r, h) is chosen to be the quartic spline kernel M5 [29]. This novel formulation

of rSPH has several advantages compared to the explicit calculation of the individual

components. Firstly, the evaluation of the right-hand side is reduced from originally five

to two summations. Secondly, the kernel evaluations in the summations are avoided by

using the look-up tables.

4.6. COMPRESSIBLE VORTEX RING 73

ro

Ro

Figure 4.1: Initial vortex ring. The ring torus has a mean radius of R0 and a tube radius of r0.

4.6 Compressible Vortex Ring

For the compressible vortex ring, we use M = 0.5, Re= Γρ0/µ = 3000, and a computa-

tional domain of size 2 × 1 × 1. The initial vortex ring (cf. Fig. 4.1) is assumed to have

a Gaussian distribution of vorticity ω = Γ/(πr0) exp (−r2/r2
0), where Γ = 0.3, r is the

distance to the core of the tube, and r0 = 0.025 the tube radius. The ring radius R is

perturbed around a mean value of R0 = 0.125 by a truncated Fourier series of amplitude

9 · 10−4 [150]

R = R0 + σg(θ) (4.18)

g(θ) =

32∑

k=1

sin(k(θ + 2πrv1)) + cos(k(θ + 2πrv2)) (4.19)

whew θ is the angular position, σ = 0.0009, and rv1 and rv2 are random variables in

[0, 1[.

For the initialization of the velocity field, we assume that the flow is incompressible

with an initial unit density field. The domain is periodic in all dimensions.

The particles are reinitialized (remeshed) after each time step using the M ′
4 kernel func-

tion [106]. Time integration is done with a second-order Runge-Kutta scheme.

74 CHAPTER 4. PARTICLE SIMULATION OF FLUIDS

4.7 Results

The result of the vortex ring simulation using 33 million particles distributed onto 16

AMD Opteron processors is shown in Figs. 4.2 and 4.4. We use a constant time step of 5 ·
10−4, corresponding to a maximum CFL number of 0.5. The velocity profile of the vortex

ring creates a density profile that has its minimum at the core of the ring. The density field

evolves to create an accumulation of mass around the ring, resulting in pressure waves that

travel through the system, re-entering through the periodic boundary downstream of the

vortex ring. Interferences with the vortex ring create additional pressure waves that decay

over time (Fig. 4.2). Iso-surfaces of vorticity at corresponding times are shown in Fig. 4.4

and the velocity distribution in Fig. 4.3.

The propagation speed of the compressible vortex ring is 0.48, which is within 4% of

the analytical solution [137], including corrections for compressibility [112].

4.7. RESULTS 75

Figure 4.2: Simulation of a compressible vortex ring. Iso-surfaces of the density field for ρ=0.900,

0.990, and 1.015 at times t=0.15, 0.25, 0.50, and 1.00. The field is discretized using 33 million

particles. Acoustic pressure waves propagating from the ring can be seen as lightly shaded sur-

faces. The darkest iso-surface of the density field indicates the position of the vortex ring.

76 CHAPTER 4. PARTICLE SIMULATION OF FLUIDS

-
6

x

r

Figure 4.3: Simulation of a compressible vortex ring. Middle cross-sections of the velocity mag-

nitude at t=0.15, 0.25, 0.50, and 1.00.

4.7. RESULTS 77

Figure 4.4: Simulation of a compressible vortex ring. Iso-surfaces of vorticity for |ω| = 40, 10,

and 0.2 at t=0.15, 0.25, 0.50, and 1.00.

78 CHAPTER 4. PARTICLE SIMULATION OF FLUIDS

4.8 Note on the Error Analysis Performed by Chaniotis et al. [29]

In this section, we comment on the error evaluation presented in the journal article

”Remeshed Smoothed Particle Hydrodynamics for the Simulation of Viscous and Heat

Conducting Flows” [29] of Chaniotis et al. . The error analysis is based on the simula-

tion of the Taylor-Green vortex flow where the analytical solution is known. Chaniotis

et al. describe to perform the error analysis using the relative L∞ error

L∞ = max
t∈[0,Tmax]

(∣
∣
∣
∣

ut
ex − ut

SPH

ut
ex

∣
∣
∣
∣

)

, (4.20)

where ut
ex denotes the maximum velocity of the exact incompressible solution at time t

and ut
SPH the maximum velocity of the SPH simulation at time t.

We failed to reproduce the errors reported in Fig. 2 for the Taylor-Green flow at Re = 1

by using the described rSPH method. A re-implementation of the method based on

the paper indicates that the relative errors are significantly larger. A refinement study

shows close to second-order convergence as expected for the use of a second order ker-

nel (Tab. 4.8). Discussions with the authors of the paper revealed that the error analysis

(Eq.(4.20)) was not applied correctly in the author’s implementation. The resulting rela-

Table 4.1: Numerical Error of rSPH

Particle Spacing Chaniotis et al. Present study Rescaled by umax(0) Order

1/20 4.5% 28.5% 0.5%

1/30 3.9% 12.8% 0.25% 1.97

1/60 - 3.6% 0.08% 1.83

tive errors (Tab. 4.8) appear to be unusually high on a first glance but they are reasonable

when taking into account that the analytical solution approaches zero in this problem,

where round off errors start to become important. The error corresponds to the maximal

error of the maximal velocity within the time interval [0,0.05] where the analytical max-

imal velocity decays from 0.04 to 0.00077. The absolute error appears in the final time

4.9. REMESHED SPH VERSUS PARTICLE-MESH HYDRODYNAMICS 79

step in all cases and is for example for h = 1/60 equals to 3 · 10−5. By scaling the error

in by the initial velocity we obtain a more meaningful measurement of the performance.

4.9 Remeshed SPH versus Particle-Mesh Hydrodynamics

In the context of hybrid particle-mesh methods, Chatelain et al. [31] presented the

Particle-Mesh Hydrodynamics (PMH), a computationally efficient particle-mesh method

based previous work of Cottet [41, 97]. PMH is a limiting case of rSPH where remeshing

is applied at every time step and has been tested on the Euler equation for a compressible,

inviscid and adiabatic flow.

In rSPH the required frequency of remeshing depends on the level of particle distortion

during a simulation. The frequency is chosen as low as possible because the remeshing

scheme may lead to a smearing effects in areas of high quantity gradients. The rSPH

method employs smooth kernels to evaluate the differential operators at the particle loca-

tions (Eq.(2.20)) which requires neighbor searches and summations.

In PMH, the particles are re-initialized every time step which can lead to numerical

diffusion but enables the differentiation to be performed computationally more efficient

by using finite differences because the particles reside on the positions of grid nodes after

remeshing. In the PMH formulation, the particles solely handle the convective part of the

governing equations. The particle quantities are then interpolated onto a mesh, where the

pressure terms are computed. PMH, like SPH, is free of the convection CFL condition

while at the same time it is more efficient as derivatives are computed on a mesh rather

than particle-particle interactions.

Chapter 5

Particle Simulation of Elastic Solids

5.1 Introduction

The simulation of soft tissue is one of the key components of virtual reality systems with

applications ranging from video games to virtual surgery environments [161, 160]. An

important aspect of these simulations is the physics-based modeling of linear and non-

linear elastic solids undergoing large deformations. A number of computational tech-

niques have been employed in the past in order to address this problem including finite

element [48, 132, 105], finite differences [164], mass-spring models [165, 167] and parti-

cle methods [130, 131, 108, 67, 72]. Grid based methods such as finite elements have been

shown to be efficient and robust in simulations of systems undergoing small or medium

deformations [48], whereas meshless/particle methods are advocated for the simulations

of solids undergoing excessive deformation and mechanical splitting [130]. The adaptiv-

ity and grid-free character of meshless methods have enabled a number of unprecedented

simulation is biomechanics [52]. We note however that, even though meshless methods

are considered capable of handling large deformations, one often introduces empirical

techniques in order to maintain the accuracy of the method. This problem may be fur-

ther aggravated when convection terms may further distort the computational elements,

as in simulations of fluid mechanics (a problem with extreme deformations) problems.

Smooth Particle Hydrodynamics (SPH) has been proposed as a meshless method capa-

ble of resolving problems with large deformations for both solids and fluids. In SPH

the continuum properties are discretized on smooth particles, the stress-strain governing

82 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

equations are formulated in a Lagrangian frame and the derivatives are computed by tak-

ing the derivatives of the particle kernels. The simulations of solids using SPH [130]

suffer however from the well known tensile instability. The problem of tensile instability

arises when the distance of particles is small under positive pressure and was attributed

to the shape of the second derivative of the interpolating kernel [159]. The forces become

attractive due to the shape of the derivative approximation resulting in large numerical er-

rors. Methods presented in literature to resolve this problem are the use of an alternative

smoothing kernel [89], the introduction of stress points [131] or artificial stress [108, 67].

This pathology of SPH is related to the fact that smooth particle approximations are inac-

curate when the particle distribution is excessively distorted [29, 41].

Linear models are well suited to mimic small deformation of elastic material because

the stress-strain relationship can be approximated by a linear function. Several works

[130, 67, 108] have employed particle models for linear elasticity. Several materials in

nature exhibit a nonlinear behavior for stretch levels exceeding 10%. Nonlinear elastic-

ity problems have been simulated in an Eulerian framework using the the finite element

method (FEM)[132]. They are based on the formulation of the deformation gradient in

terms of the current material position with respect to its reference position. The exten-

sion of this approach to Lagrangian particle methods is hindered by the fact that when

the material properties are tracked in a moving framework the reference position be-

comes irrelevant. In order to circumvent this difficulty we replace the direct evaluation

of the deformation gradient by its temporal evolution. The resulting formulation enables

a straightforward and efficient implementation using particle methods. To the best of

our knowledge, particle models for nonlinear elasticity have not been presented in the

literature.

In this chapter, we propose a particle method that relies on remeshing to ensure the accu-

racy of the simulations. Particles are convected in a Lagrangian framework, followed by

a regularization of their locations and the corresponding projection of the particle proper-

ties. This approach enables accurate simulations of solids undergoing large deformations

and eliminates spurious effects such as the tensile instability. In addition, this remesh-

5.2. GOVERNING EQUATIONS 83

ing procedure accommodates the generalisation of stress-strain relations in a Lagrangian

framework and the extension of particle methods to problems of non-linear elasticity. We

compare the present particle methods with the finite element solver (ABAQUS 6.4/EX-

PLICIT) in benchmark problems involving linear and nonlinear elastic solids. We examine

the accuracy of the method in a three-dimensional test problem with periodic boundary

conditions and demonstrate its capability to simulate large deformations in a plane strain

compression test. Finally, we validate our particle solver by simulating liver tissue ex-

posed to an aspiration test [115, 116].

5.2 Governing Equations

We consider two different approaches to model elastic material: a linear and nonlinear

model. Linear models are well suited to mimic small deformation of elastic material be-

cause the stress-strain relationship can be approximated by a linear function. Exceeding

a nominal stretch of 10% most material in nature reveal a nonlinear behavior. Several

researchers ([130],[67],[108]) have studied the particle model for linear elasticity. Parti-

cle models for nonlinear elasticity has not been presented in literature to the best of our

knowledge.

5.2.1 Linear Elastic Model

We consider the conservation of mass and momentum in Lagrangian form:

Dρ

Dt
= −ρ∇ · u, (5.1)

ρ
Du

Dt
= ∇.σ = ∇. (−pI + S) , (5.2)

where ρ is the density, u the velocity of the material and D
Dt

is the material derivative. The

stress tensor σ can be splitted into a pressure part −pI and a deviatoric part S. Assuming

84 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

Hooke’s law the deviatoric part S evolves componentwise as follows [67]

DSij

Dt
= 2µs

(

ε̇ij −
1

3
δij ε̇ij

)

+ SijΩjk + ΩikSkj, (5.3)

ε̇ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

, (5.4)

Ωij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)

, (5.5)

where µs is a shear modulus, ε the strain rate, and Ω the rotation rate. The pressure p is

determined by an equation of state

p = c2
0(ρ − ρ0), (5.6)

where c0 is the speed of sound and ρ0 is the reference density. We obtain the speed of

sound c0 and the shear modulus µs from the Young’s modulus E and the Poisson ratio ν

by

c0 =

√

E

3(1 − 2ν)ρ0
, (5.7)

µs =
E

2(1 + ν)
. (5.8)

5.2.2 Nonlinear Elastic Model

In this context, we consider a novel particle model for nonlinear elasticity. The continuity

and momentum equation have the same form as in the linear case (Eq. 5.1 and 5.2). The

stress tensor, however, is defined by a nonlinear relationship. Without loss of generality

we focus on the constitutive law of isotropic compressible hyperelastic material in this

study. The hyperelastic solid model is an established nonlinear model to describe soft

biological tissue [62, 115, 116] originally developed for rubber-like material [85].

Hyperelastic material is characterized by of a strain-energy function U(F) that is only a

function of the deformation gradient F [85]. The deformation gradient F is defined by

F(X, t) =
∂x(X, t)

∂X
(5.9)

5.2. GOVERNING EQUATIONS 85

where x is the current position and X the reference position of the material. When the

material resides in the reference position it is undeformed and stress-free (x = X ⇒ F =

I). The deformation gradient can be considered as the Jacobian matrix of the mapping

X 7→ x(X). Its determinant J = |F| corresponds to the local volume change with respect

to the reference position. Numerical schemes, such as FEM, evaluate the deformation

gradient directly using Eq.(5.9) in the reference frame.

In the Lagrangian framework, however, we consider the evolution of the deformation

gradient in the following form

DF

Dt
=

D ∂x
∂X

Dt
=

∂ Dx
Dt

∂X
=

∂u

∂X
=

∂u

∂x

∂x

∂X
(5.10)

⇒ DF

Dt
=

∂u

∂x
F (5.11)

A key aspect of Eq.(5.11) is that the reference position X is absent and its knowledge is

unnecessary during the evolution.

We consider the strain-energy function as reduced polynomial of order N as presented

by Nava et al. [115] to characterize soft biological tissue

U(Ī1, J) =

N∑

n=1

Cn0

(
Ī1 − 3

)n
+

1

D
(J − 1)2

(5.12)

where J = |F | is the volume change and Ī1 = trace
(
B̄
)

is the normalized first strain

invariant of the normalized left Cauchy Green strain tensor B̄(F), Cn0 denotes the poly-

nomial coefficient and D the volume coefficient. The normalized left Cauchy Green strain

tensor B̄ is expressed by

B̄ = J− 1

3 FFT (5.13)

The symmetric Cauchy stress tensor used in Eq.(5.2) is derived from the strain-energy

function U by the relationship [85]

σ = J−1 ∂U

∂F
FT . (5.14)

Thus, the pressure p and the deviatoric stress S are evaluated by the following equations

86 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

[1]

p = −∂U

∂J
= − 2

D
(J − 1) (5.15)

S =
2

J
DEV

[
∂U

∂Ī1

B̄

]

=
2

J
DEV

[
N∑

n=1

nCn0

(
Ī1 − 3

)n−1
B̄

]

(5.16)

where DEV [�] represents the deviatoric part of �.

5.2.3 Initial and Boundary Conditions

The initial condition consists of a density and a velocity field distribution. The initial

deviatoric part of the stress tensor is assumed to be S(x, 0) = S0(x) in the linear case, the

initial deformation gradient F(x, 0) = F0(x) in the nonlinear case.

We consider two kinds of boundary conditions

• Free surface or stress-free boundary. The stress tensor σ at the boundary is such

that the surface is traction free

σ · n = 0, (5.17)

where n is the surface normal.

• Fixed or no-slip boundary. The velocity at the boundary is prescribed in advance,

when for example the material is attached to a wall.

5.3 Particle Equations

The particle position xp, mass mp, volume vp, and velocity up evolve by the following

system of ordinary differential equations:

dxp

dt
= up,

dmp

dt
= 0,

dvp

dt
= 〈∇ · u〉pvp, (5.18)

dup

dt
=

vp

mp

(−〈∇p〉p + 〈∇.S〉p) ,

5.3. PARTICLE EQUATIONS 87

where 〈�〉p represents the mollified derivative approximation of � based on Eq.(2.20). The

evaluation of the pressure p and the deviatoric stress S depends on the constitutive model

of the elastic material.

The surface of the elastic body is described using the Particle Level Set Method [82,

81] for visualization purpose and for the evaluation of the surface normal. The level

set function represents the signed distance function to the interface. The particles carry

the level set information as a scalar attribute Φp that remains constant during the time

integration:

dΦp

dt
= 0 (5.19)

We reinitialize the level set value every 20th time step to ensure the signed distance prop-

erty.

5.3.1 Linear Elastic Model

The pressure pp and the evolution of the deviatoric stress Sp on particle p for the linear

elastic solid is expressed by

pp = c2
0(

mp

vp
− ρ0)

dSij,p

dt
= 2µ

(

ε̇ij,p −
1

3
δij ε̇ij,p

)

+ Sij,pΩjk,p + Ωik,pSkj,p

ε̇ij,p =
1

2

(〈
∂ui

∂xj

〉

p

+

〈
∂uj

∂xi

〉

p

)

(5.20)

Ωij,p =
1

2

(〈
∂ui

∂xj

〉

p

−
〈

∂uj

∂xi

〉

p

)

where ε̇p is the strain rate and Ωp the rotation rate of particle p.

5.3.2 Hyperelastic Model

The deformation gradient Fp on particle p evolves by

dFp

dt
=

〈
∂u

∂x

〉

p

Fp. (5.21)

88 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

The volume change Jp, the normalized left Cauchy Green strain tensor B̄p, the normal-

ized first invariant Ī1,p of a particle p are evaluated by

Jp = |Fp|,

B̄p = J
− 1

3

p FpF
T
p ,

Ī1,p = trace(B̄p).

Finally, the pressure pp and the deviatoric stress Sp can be expressed by

pp = − 2

D
(Jp − 1) ,

Sp =
2

Jp

DEV

[
N∑

n=1

nCn0

(
Ī1,p − 3

)
B̄p

]

. (5.22)

The terms are based on the constitutive model of a hyperelastic material in reduced poly-

nomial form (Eq.(5.15) and (5.16)).

5.3.3 Boundary Conditions

The boundary conditions are imposed by use of image particles that have similar physical

properties as the solid particles. The boundary particles interact with the solid particle

such that the boundary conditions are satisfied. At a free surface, the image particles are

adjusted to satisfy the stress-free boundary condition. The stress tensors of the image

particles are projected such that the surface is traction free [131]. The surface normal

used for the projection is evaluated based on the particle level set method [81]. At a fixed

boundary, the image particles enforce a prescribed velocity of the boundary whereas the

remaining attributes satisfy a homogeneous Neumann condition.

5.4 Accuracy

We consider a box of elastic material in 3D with periodic boundary conditions in all

directions. The initial velocity is a three dimensional sinusoidal function (u(x, 0) =

5.4. ACCURACY 89

sin(2πx) sin(2πy) sin(2πz)) that leads to periodic oscillations in the material. To de-

termine the accuracy of the particle method we measure the maximum error (L∞) of the

velocity profile by comparison with the analytic solution after one period. The Young’s

Modulus is E = 100 and the Poisson ratio is set to ν = 0.3 in the linear case. The polyno-

mial coefficient is C10 = 10 and the volume coefficient D = 1 in the nonlinear case. The

Finite Element simulation are performed with ABAQUS 6.4/EXPLICIT using the explicit

solver.

Fig. 5.1 shows the L∞-error over the inverse of the particle distance h. The particle

solution converges with second order in the L∞ - error in both the linear and nonlinear

case. The errors are comparable with the FEM solution including the same number of

computational elements.

10 20 40 80
10

−4

10
−3

10
−2

10
−1

10
0

h
−1

L
∞

 −
e
rr

o
r

10 20 40 80
10

−4

10
−3

10
−2

10
−1

10
0

L
∞

 −
e
rr

o
r

h
−1

Figure 5.1: L∞ - error of the particle solution (dashed line) and the FEM solution (dash-dotted

line) in linear (left) and nonlinear (right) case compared to 2nd order scaling (solid line)

90 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

5.5 Plane Strain Compression Test

To show the performance of the solid particle solver we compare the results of plane

strain compression test with an FEM solution provided by ABAQUS 6.4/EXPLICIT for

linear and nonlinear elasticity. The elastic material is initially undeformed and has a

rectangular shape of size 1 × 2 (Fig. 5.2). The horizontal faces move with a constant

vertical velocity upiston = 25 whereas the vertical faces represent free surfaces. The

vertical compression of the material leads to a horizontal expansion. The thickness of the

the piston is neglected. This problem exposes a singularity at the corners of the elastic

material where the material is forced to rotate for ≈ 90◦.

u piston

u piston

Free Surface

Figure 5.2: Plane strain compression test. Elastic material in rectangular shape is compressed by

two imaginary pistons moving with a constant velocity upiston.

The simulations are performed with a initial density that is equal the reference density

ρ0 = 1 in the presented cases. The time integration scheme is Runge Kutta 4th order with

a constant time step of ∆ t = 5 · 10−5.

5.5. PLANE STRAIN COMPRESSION TEST 91

5.5.1 Linear Elastic Model

The elastic material has a Young’s Modulus of E = 100 and a Poisson ratio of ν = 0.49.

This value of Poisson ratio results in to a behavior of a nearly incompressible solid.

Fig. 5.3 shows the evolution of the elastic material based on the presented particle solver

compared to an FEM solution. The two solutions mainly differ in their behavior near the

numerical singularity at the corner of the piston. The FEM solver reveals significant

artifacts near the singularity resulting in nodes crossing the ambient piston whereas the

particle solution is still physically plausible. Nodes of the FEM grid pass the border of

the piston causing nonphysical structures in the vicinity of the singularity.

Even, refinement of the FEM grid cannot resolve this problem as shown in Fig. 5.4. In

contrary, a refinement to a grid containing 8000 cells leads to an abort of the simulation at

t = 0.0263 because the deformation speed becomes larger than the wave speed at nodes

in the vicinity of the corner.

92 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

Figure 5.3: Plain strain compression test with linear elasticity. The Finite Element solution (left)

is compared to the particle solution (right) at t = 0.0, 0.02, 0.025, 0.03 using the same initial

resolution (≈ 2000 computational elements). The color represents the pressure distribution.

5.5. PLANE STRAIN COMPRESSION TEST 93

Figure 5.4: Plane strain compression test with linear elasticity. Effect of the resolution on the

particle solution at t = 0.03 using ≈ 800,≈ 2000 and ≈ 8000 nodes/particles . The color

represents the pressure distribution.

94 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

Table 5.1: Maximum horizontal displacement at t = 0.02

Particles/Nodes (t = 0) Particle Method Order FEM

512 0.138 - 0.230

2028 0.192 1.2 0.232

8192 0.228 2.6 0.232

32768 0.233 1.7 -

131072 0.235 1.8 -

Table 5.1 illustrate the effect of the resolution on the maximum horizontal displacement

for both methods. The maximum horizontal displacement resides on the surface of the

elastic solid. The particle solution converges more than linearly and agrees well with

the FEM results. The FEM solution is nearly converged at a low resolution whereas

the particle method requires a high resolution to reach convergence. This result might

be explained by the diffusive effect of the remeshing and the level set reinitialization.

Particularily, the first-order reinitialization scheme of the level set function can shift the

surface significantly as shown by Hieber et al. [81].

5.5. PLANE STRAIN COMPRESSION TEST 95

5.5.2 Hyperelastic Model

To validate the particle solver for hyperelastic solid we consider the strain-energy rela-

tionship as an expansion series (Eq.(5.12)) with N = 1 and C10 = 2.2 and D = 0.001.

Fig. 5.5 shows the simulation results of the FEM and the particle solver at t = 0.025.

The FEM solution remains stable for all resolutions and proves that the nonlinear model

is suitable for large deformations. The solution, however, still reveals severe numerical

artifacts in the vicinity of the singularity, even at a high resolution. The large rotation and

compression of the material at the singularity causes large errors in FEM solution because

the stresses are evaluated int the undeformed reference frame and mapped to the deformed

Lagrangian frame. Contrarily, the Lagrangian particle solver can handle rotations easily

because the computational elements follow the material making mapping of quantities

unnecessary.

Table 5.2 shows the effect of the resolution on maximal horizontal displacement of both

methods. The FEM solution and the particle solution converge to a displacement with

a deviation of 2%. Similarly to the linear case (Table 5.1), the FEM solver reaches a

converged solution at a lower resolution than the particle solver. Again, we see the origin

of this discrepancy in the remeshing of the particles and reinitialization of the level set

function.

Table 5.2: Maximal horizontal displacement at t = 0.02

Particles/Nodes (t = 0) Particle Method Order FEM

512 0.143 - 0.249

2028 0.200 1.0 0.250

8192 0.237 1.6 0.250

32768 0.250 1.8 -

131072 0.254 1.8 -

96 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

Figure 5.5: Plane Strain Compression test with nonlinear elasticity. Effect of the resolution on

the particle solution at t = 0.025 using ≈ 500,≈ 2000 and ≈ 8000 nodes/particles. The color

represents the pressure distribution.

5.6. SIMULATION OF AN ASPIRATION TEST ON LIVER TISSUE 97

5.6 Simulation of an Aspiration Test on Liver Tissue

To demonstrate the performance of particle solver on a real world problem we try to repro-

duce the liver tissue behavior during an aspiration test [115, 116] using our particle solver.

The aspiration test is performed by pressing a tube against the liver tissue and creating a

vacuum inside the tube such that the tissue is sucked into the aspiration hole (Fig. 5.6

and 5.7). The material properties can be determined based on the tissue deformation by

reverse engineering.

Figure 5.6: Aspiration test. The test device (left) and a schematic description (right) of the aspi-

ration test (in courtesy of Nava et al. [116])

We choose the hyperelastic liver model of Nava et al. [115] that describes the strain-

energy relationship in the reduced polynomial form of order N = 5 (Eq.(5.12)). The

viscoelasticity of the tissue is modeled by time dependent relaxation coefficients in form

of a Prony series of order K = 4 (cf. Appendix D, especially Eq.(D.2)).

We simplify the viscosity model by considering bulk viscosity only and restricting the

Prony series to first order. The volume coefficient determines the compressibility of the

material and is chosen to a very small value (D = 5e−81/Pa) to mimic incompressible

behavior. We solve the viscosity model by integrating an additional ODE following the

98 CHAPTER 5. PARTICLE SIMULATION OF ELASTIC SOLIDS

methodology of particle methods. The derivation of the ODE of first order from Eq.(5.15)

is shown in the appendix D.

Figure 5.7: Aspiration test. Typical image showing the exposed tissue bubble during the aspiration

test (in courtesy of Nava et al. [116])

The size of the domain is 3cm×3cm×3cm containing approximately 100000 particles.

The tissue covers the domain up to a height of 2.5cm. The aspiration hole with a diameter

of 1cm is placed at the center of the top face. The time integrator is an explicit Runge

Kutta scheme of 4th order with a time step of 0.0005. A no-slip boundary conditions is

imposed to the lateral faces of the tissue and the area surrounding the aspiration hole. The

pressure inside the aspiration tube ptube = p∞(1−e−2t/s) decreases with time approaching

a limit of p∞ = −300mbar.

Fig. 5.8 shows a representative cross-section of the domain through the center of the

bubble at time t = 15. It is colored according to the stretch distribution. The value of

the stretch is small, generally less than 5%. The non-zero stretch is concentrated in the

vicinity of the aspiration hole indicating that the domain size is sufficiently large. The

stretch is positive where tissue is sucked into the tube and negative where the tissue is

pressed against the aspiration device.

The time history of the bubble displacement is shown in Fig. 5.9. The bubble displace-

ment is monitored on the tip of the bubble in both the simulation and the experiment. The

comparison shows very good agreement between the particle solution and the experimen-

tal results.

5.6. SIMULATION OF AN ASPIRATION TEST ON LIVER TISSUE 99

Figure 5.8: Aspiration test. Stretch distribution in the bubble crossection at t = 15 with isolines

at ±1%,±2%,±3%,±4%

5 10 15
0

0.1

0.2

0.3

0.4

Time [s]

D
is

p
la

c
e
m

e
n
t
[m

m
]

Figure 5.9: Aspiration test. Time history of the displacement of the bubble tip in the particle

simulation(solid line) compared to the experimental measurement (dashed line) [116]

Chapter 6

Parallel Particle Simulations

6.1 Introduction

The dynamics of particle methods are governed by the interactions of the N compu-

tational particles resulting in an N-body problem with a computational cost that scales

nominally as O(N2). For short-ranged particle interactions, as in simulations of diffusion

with the method of Particle Strength Exchange [49], the computational cost scales lin-

early with the number of particles. In the case of long-range interaction potentials such as

the Coulomb potential in electrostatics, the gravitational potential in astrophysics, or the

Biot-Savart law in VM, Fast Multipole Methods (FMM) [70] reduce the computational

cost to O(N). Alternatively, long-range interactions can be described by equivalent field

equations (such as the Poisson equation) that can be solved using meshes, resulting in

hybrid Particle-Mesh (PM) algorithms [77, 84]. The computational cost of hybrid meth-

ods scales as O(M) , where M denotes the number of mesh points used for resolving

the field equations. The choice between FMM and PM techniques is dictated by the

boundary conditions of the problem with FMM techniques allowing more flexibility on

their specification, while PM schemes are well suited for periodic systems. An important

factor, distinguishing FMM and PM techniques, is the parallelization efficiency of these

methods, as the mesh regularity of the PM algorithm enables implementations that are

typically one or two orders of magnitude faster than corresponding FMM [45, 178] im-

plementations. FMM-based particle methods have limited scalability for shared memory

systems [46], while their implementation in distributed memory systems is difficult due to

102 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

the inherent global nature of the underlying tree data structure. It is important to observe,

however, that even when FMM are used for the evaluation of the particle interactions, the

need for hybrid PM algorithms is imperative in adaptive particle methods such as VM or

SPH for the reinitialization of the distorted particle locations [97].

The parallel implementation of PM techniques is hindered by several factors:

• exploiting the symmetry of the particle interactions requires sending back of ghost

contributions to the real particle,

• the simultaneous presence of particles and meshes prohibits a single optimal way

of parallelization,

• complex-shaped computational domains and strong particle inhomogeneities re-

quire spatially adaptive domain decompositions,

• particle motion may invalidate the existing domain decomposition causing rising

load imbalance, and complicates the implementation of multi-stage integration

schemes,

• inter-particle relations constrain decompositions and data assignment.

State-of-the-art particle codes have successfully addressed some of the parallelization

issues mentioned in Section 6.1 as for example the electromagnetic PIC code QUICK-

SILVER [127], demonstrating a parallel efficiency of 60% solving a scaled-size irregular

case on 1024 processors, while achieving 90% efficiency in the ideal uniform load case on

3200 processors. For purely particle-based simulations a number of application-specific

parallel software libraries is also available, such as PARTI for Monte-Carlo simulations

[111], or the Parallel Utilities Library (PUL) [30]. Recent hybrid PM implementations

include VORPAL [117] for plasma simulations and the Particle-in-Cell code PICARD

[27].

While these codes provide a development platform for certain classes of particle meth-

ods, they do not allow generalizations to other classes of particle methods. For example

6.1. INTRODUCTION 103

PICARD and VORPAL have been designed for PIC simulations and they can be used

for load balancing and domain decomposition. Beyond these two aspects, however, they

cannot be used for developing SPH, VM, or MD codes.

The Parallel Particle Mesh (PPM) library bridges the gap between general-purpose in-

frastructure libraries and application-specific simulation libraries, and provides a general-

purpose parallel framework that can handle particles-only, mesh-only, as well as hybrid

particle-mesh systems. The PPM library is portable through the use of standard languages

(Fortran 90 and C) and libraries (MPI) and is applicable on single processor machines as

well as on distributed memory, shared memory, and vector parallel processors. Computa-

tional efficiency is achieved by dynamic load balancing, dynamic particle re-distribution,

explicit message passing, and the use of simple data structures. The library core provides

several adaptive domain decomposition schemes, multiple processor assignment methods,

load balance monitoring, dynamic load balancing, data mapping (sending, receiving), up-

date of overlap regions, parallel file I/O, optimized inter-processor communication, neigh-

bor lists (cell lists and Verlet lists [172]), routines for building trees, particle-to-mesh, and

mesh-to-particle interpolation. This core infrastructure is supplemented with commonly

used numerical methods such as mesh-based solvers, evaluation of differential operators

on particles [54], FMM, parallel FFT, and multi-stage ODE integrators. Moreover, the

PPM library provides bindings for the external libraries fftw, MathKeisan FFT (NEC,

Inc.), and METIS (for graph partitioning for load assignment [91]).

This chapter describes the key concepts in parallel hybrid particle-mesh computations

and shows the efficiency of the PPM library on benchmarks relevant for this thesis. Paral-

lel timings, speedup, and efficiency are demonstrated for an rSPH simulation of an com-

pressible vortex ring. This prototype code exemplifies the performance of the program

codes used in this thesis.

104 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

6.2 Fundamentals

We consider simulation systems that are formulated in the framework of PM algorithms

as outlined in the preceeding section. The field equations are solved using structured or

uniform Cartesian meshes. As a result, the physical and computational domains are rec-

tangular or cuboidal. Complex geometries are handled by immersed boundaries, through

the use of source terms in the corresponding field equations, or through boundary element

techniques. Adaptive meshing capabilities are possible using Adaptive Mesh Refinement

(AMR) concepts as adapted to particle methods [18]. Moreover, the particle wavelet

method [19] combine the natural adaptivity of wavelets for multiresolution problems with

the robustness of the particle methods.

The simultaneous presence of particles and meshes requires different concurrent domain

decompositions. These decompositions divide the computational domain into a minimum

number of cuboidal sub-domains with sufficient granularity to provide adequate load bal-

ancing. The concurrent presence of different decompositions allows to perform each step

of the computational algorithm in its optimal environment with respect to load balance

and the computation-to-communication ratio. For the actual computations, the individual

sub-domains are treated as independent problems and extended with ghost mesh layers

and ghost particles to allow for communication between them.

Connections can be used to define relations between particles, e.g. particle pairs, triplets,

quadruplets, etc. These relations may describe a physical interaction, such as chemical

bonds in molecular systems, or a spatial coherence, such as a triangulation of an immersed

boundary or an unstructured mesh.

Memory for internal lists and communication buffers is allocated by the PPM library. All

other memory, such as simulation data (particles, fields) and index lists (cell lists, Verlet

lists, etc.), is held by the client application. This ensures user-control over the data and

allows multiple different sets of particles, connections, and fields to be used concurrently.

The number of topologies, sub-domains, particle sets, fields, and meshes is only limited

by the cumulative memory capacity of all processors.

6.3. TOPOLOGIES 105

6.3 Topologies

A topology is defined by the decomposition of space into sub-domains with the corre-

sponding boundary conditions, and the assignment of these sub-domains onto processors.

Multiple topologies may co-exist and library routines are provided to map particle and

field data between them (cf. Section 6.4). Fields are defined on meshes, which in turn are

associated with topologies. Every topology can hold several meshes. The only constraint

is that sub-domain boundaries must align with mesh lines/planes.

As the domain decomposition may take several seconds to complete, a given topology is

assumed to persist through longer periods of the simulation. For problems with free-space

boundary conditions the extent of the computational domain is adjusted in order to enclose

all particles at any time. An extra margin may be added to the computational domain to

avoid repeated update of the topology. For problems in confined systems, subject to

e.g. periodic boundary conditions, the extent of the computational domain is fixed and

the decomposition is performed filling the entire space, disallowing void space(s). This

assures that particles cannot leave the computational domain, which would require an

immediate, potentially expensive, re-decomposition.

In order to achieve good load balance, both the load distribution and the computational

cost of the topology creation are monitored throughout the simulation. The Stop at Rise

(SAR) heuristic [111] is used in the PPM library to decide when problem re-decomposition

is advised, i.e. when the cost of topology re-definition is amortized by the gain in load

balance. Moreover, all topology definition routines can account for the true computational

cost of each particle, for example defined by the actual number of its interactions. A

routine is provided to compute this number based on the lengths of Verlet lists.

Domain decompositions

The PPM provides a number of different adaptive domain decomposition techniques for

particles, meshes, and volumes, the latter defining geometric sub-domains with neither

meshes nor particles present. These decompositions currently include: recursive orthogo-

106 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

nal bisection, x-, y-, and z-pencils, xy-, xz-, and yz-slabs, cuboids, and a user-defined de-

composition. Recursive orthogonal bisection is based on an adaptive binary tree (cf. Sec-

tion 6.11), where subdivisions are allowed in all spatial directions. Pencil decompositions

prohibit subdivisions in one direction, resulting in an adaptive decomposition where each

sub-domain extends over the whole computational domain in at least one spatial dimen-

sion. Such decompositions are useful when performing fast Fourier transforms. In slabs,

two directions are fixed. Cuboids are created using adaptive quad- and oct-trees in two

and three dimensions, respectively, and the user-defined decomposition allows the client

program to explicitly specify the sub-domains. After checking the validity of such a de-

composition, the PPM library directly proceeds with assignment of the sub-domains to the

processors.

In addition, a special null decomposition is provided, that does not perform any domain

decomposition. It creates only one “sub-domain” which is the computational domain it-

self. This trivial “decomposition” is used to evenly distribute the particles among proces-

sors, irrespective of their spatial location. The resulting special topology is called the ring

topology and the sub-domain is assigned to every processor. The ring topology supports

full O(N2) calculations, and also allows to distribute data of initially unknown processor

affiliation (cf. Sections 6.4 and 6.5).

To assess the performance of the different domain decomposition schemes, we compare

them on four test cases using 16 processors (Table 6.1). The quality of decomposition is

quantified by the standard deviation of the number of particles across processors and by

the total number of ghost particles needed to communicate the boundaries. The domain

is decomposed using a non-adaptive binary tree, Recursive Orthogonal Bisection (ROB),

and an adaptive oct-tree. The subdomains are assigned onto the processors in an opti-

mal way, minimizing the total length of communication boundaries. This assignment is

performed using the external library METIS[91]. One million particles are distributed in

the unit cube in four ways: uniformly, on a diagonal from the point (0,0,0) to the point

(1,1,1), on the surface of a sphere with radius 0.25, and on a spiral. The computational

time needed to contruct the topologies is about 30 milliseconds per subdomain in all cases.

6.3. TOPOLOGIES 107

The adaptive oct-tree and ROB decomposition provide a topology where the particles are

well distributed in all cases

Particle Distribution Standard deviation of particles per processor

Non-adaptive tree ROB Adaptive oct-tree

Uniform 422 268 265

Sphere 62501 1865 2626

Spiral 73350 2336 6011

Diagonal line 108255 148 161

Particle Distribution Average number of ghosts particles per processor

Non-adaptive tree ROB Adaptive oct-tree

Uniform 33847 33832 33750

Sphere 35268 36526 28187

Spiral 10584 31102 22297

Diagonal line 20050 28940 46232

Table 6.1: Comparison of different domain decomposition schemes on four test problems. For

each scheme, the equidistribution of particles and the total communication overhead are reported.

Details see main text.

Assignment of sub-domains onto processors

Load balancing in the PPM library comprises two main components: domain decompo-

sition and assignment of sub-domains onto processors. While the former has to ensure

sufficient granularity and partitioning of the computational cost, the latter has to ensure

even distribution of computational load among processors, accounting for possible differ-

ences in processor speeds. The computational cost for each sub-domain, as determined

by the number of particles, the number of mesh points, or the true computational cost, is

known from the domain decomposition step. The individual processor speeds are mea-

sured internally by the PPM library, solving a small Lennard-Jones system [8] with an

108 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

increasing number of particles until all processors report sufficient timing statistics..

Using this information, PPM provides several methods of assigning the sub-domains to

the processors. The PPM-internal method assigns contiguous blocks of sub-domains to

processors until the accumulated cost of a processor is greater or equal to the theoretical

average cost under uniform load distribution. The average is weighted with the relative

processor speeds. In addition, four different METIS-based [91] assignments, and a user-

defined assignment are available.

Boundary conditions

At the external boundaries of the computational domain Neumann, Dirichlet, free space,

symmetric, and periodic boundary conditions are supported. These conditions comple-

ment the particular mesh-based solver that is being employed. More involved boundary

conditions and complex boundary shapes are represented inside the computational domain

by defining connections among the particles, or using immersed interfaces.

6.4 Mapping

PPM topologies implicitly define a data-to-processor assignment. Mapping routines pro-

vide the functionality of sending particles and field blocks to the proper processor, that is

the one that “owns” the corresponding sub-domain(s) of the computational space. Three

different mapping types are provided for both particles and field data:

1. a global mapping which involves an all-to-all communication,

2. a local mapping for neighborhood communication, and

3. ghost mappings to update the ghost layers.

In addition, a special ring shift mapping is provided for particle data on the ring topology,

and a connection mapping is provided for taking into account links between particles.

6.5. PARTICLE-PARTICLE INTERACTIONS 109

The global mapping is used to perform the initial data-to-processor assignment or to

switch from one topology to another, whereas the local mapping is mainly used to ac-

count for particle motion during a simulation. Communication is scheduled by solving

the minimal edge coloring problem using the efficient approximation algorithm by Viz-

ing [175, 51, 53]. Ghost mappings are provided to receive ghost particles or ghost mesh

points, or to send ghost contributions back to the corresponding real element, for exam-

ple after a symmetric particle-particle interaction or a particle-to-mesh interpolation. The

ring shift mapping sends data-sets around all processors, while each processor keeps a

local copy of its original data. After every ring shift, each processor can perform its op-

erations using the original local data-set as well as the current traveling set. During a

complete cycle, all possible pair interactions will thus be considered. Finally, connection

mappings are provided to distribute connections among processors according to an ex-

isting distribution of particles, and to update connection lists when particles have moved

across processor boundaries.

All mapping types are organized as stacks. A mapping operation consists of 4 steps: (1)

defining the mapping, (2) pushing data onto the send stack, (3) performing the actual send

and receive operations, and (4) popping the data from the receive stack. This architecture

allows data stored in different arrays to be sent together to minimize network latency, and

mapping definitions to be re-used by repeatedly calling the push/send/pop sequence for

the same persistent mapping definition.

Mappings of field data can be masked. An optional binary mask selects which mesh

points are to be mapped and which ones are not. The values of non-mapped points remain

unaffected by the mapping operation.

6.5 Particle-Particle Interactions

The evaluation of Particle-Particle (PP) interactions is a key component of PM algorithms.

Sub-grid scale phenomena can require local particle-based corrections, differential oper-

ators can be evaluated on irregular locations [54], or the main dynamics of the system can

110 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

be governed by particle interactions.

The PPM library implements PP computations using cell lists, Verlet lists, or the full

O(N2) direct method. Both symmetric and non-symmetric interactions are supported, the

former to reduce the amount of duplicated work. In each method, the interaction potential

or kernel can be specified either by a function pointer to a user function, by passing a

look-up table of kernel values, or by choosing one of the predefined PPM-internal kernels.

The direct evaluation makes use of the PPM ring topology (cf. Section 6.3) and the ring

shift mapping (cf. Section 6.4) to compute all N2 pair interactions. Cell lists are provided

for local (short range) interactions. Hereby, particles are sorted into equisized cuboidal

cells, whose size reflects the interaction cutoff. In PPM, cell lists are defined per sub-

domain and ghost cells are used around each sub-domain. Fig. 6.1 illustrates the cell-cell

interactions in asymmetric and symmetric evaluations. To achieve complete symmetry, a

novel interaction scheme involving diagonal interactions is introduced. This scheme re-

duces the amounts of memory overhead and communication for symmetrically evaluated

particle interactions by 33% in two dimensions and 40% in three dimensions. Further-

more, it allows a constant communication overhead with increasing number of proces-

sors, amounting to a parallel shift in the speedup plot rather than a convex curve. Given

the cells are numbered in ascending x, y, (z), starting from the center cell with number 0,

the cell-cell interactions in PPM are: 0–0, 0–1, 0–3, 0–4, and 1–3 in two dimensions, and

0–0, 0–1, 0–3, 0–4, 0–9, 0–10, 0–12, 0–13, 1–3, 1–9, 1–12, 3–9, 3–10, and 4–9 in three

dimensions. The difference between symmetric and non-symmetric PP interactions is

measured using a PSE diffusion problem. The computational time per time step is found

to decrease by a factor of 1.72 when going from asymmetric to symmetric interactions.

For spherically symmetric interactions, cell lists contain up to 27/(4π/3) = 81/(4π) ≈
6 times more particles than actually needed. Verlet lists [172] are provided to reduce this

overhead. For each particle they involve an explicit list of all other particles it has to

interact with.

Besides PP interactions, PPM also supports interactions based on inter-particle connec-

tions. Neighbor lists are not required in this case since a connection is an explicit list of

6.6. PARTICLE-MESH AND MESH-PARTICLE INTERPOLATIONS 111

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�

�
�
�

1

2 3 4

(a)

−1

−4 −3 −2

0

sub−domain

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�

�
�
�

0 1

2 3 4

(b)sub−domain

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�

�
�
�

0 1

2 3 4

(c)sub−domain

Figure 6.1: Cell-cell interactions and ghost-layer arrangement. (a) For non-symmetric particle-

particle interactions, the ghost layer (light gray) extends all around the sub-domain. Interactions

are one-sided. (b) In traditional symmetric cell list algorithms, ghost layers are required on all but

one boundary of the domain. (c) In PPM, diagonal interactions are introduced (1–3). Ghost layers

are now symmetric and do not overlap with any other ghost layers of neighboring sub-domains.

This results in less communication, better scaling in memory and simpler algorithms (e.g. when

considering connected particles). The two-dimensional case is depicted. See text for interactions

in the three-dimensional case.

all its member particles. Connection interactions are supported by separate routines.

Alternatively, the client program can implement its own interaction routines. Template

subroutines are provided for the use of cell lists, Verlet lists, direct interactions, and con-

nection interactions.

In addition to the routines performing the actual computations, the PPM library also

provides a routine to create look-up tables from either a function pointer or an internal

kernel. Such tables can then be passed to any of the compute routines for the evaluation.

6.6 Particle-Mesh and Mesh-Particle Interpolations

All hybrid PM methods involve interpolation of irregularly distributed particle quantities

from particle locations onto a regular mesh and interpolation of field quantities from the

grid points onto particle locations.

112 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

These interpolations are utilized for two purposes, namely:

• the transformation of field quantities between the particle solver and the field solver,

and

• the reinitialization of distorted particle locations.

While the first issue is a well-established notion in PM techniques, the reinitialization

of particle locations and weights when particle locations get distorted by the flow map

is a critical, albeit often overlooked, aspect of particle methods for the simulation of

continuous systems [97]. Particle overlap is needed in order to ensure convergence of

the method and this is achieved by periodically re-initializing particles onto a regular

mesh (“remeshing”). This involves the interpolation of particle properties onto the mesh

and replacing the current set of particles by new particles created at the locations of the

mesh points.

The PPM library provides routines that perform these operations. The interpolation

weights W can be pre-computed and stored to facilitate adjustments of the interpola-

tion or interpolate several sets of quantities. If the weights are not pre-computed, they are

determined during the actual interpolation. Currently implemented interpolants include

first and second order B-Splines and the M ′
4 function [106].

The interpolation of mesh values onto particle locations readily vectorizes: the interpo-

lation is performed by looping over the particles and receiving values from mesh points

that lie in the support of the interpolation kernel. Therefore, the values of individual

particles can be interpolated independently.

The interpolation of particle values onto mesh locations, however, leads to data depen-

dencies as the interpolation is still performed by looping over particles, but a mesh point

may receive values from more than one particle. To circumvent this problem, the PPM

library implements the following technique [177]: when new particles are created in the

course of remeshing, we assign colors to the particles such that no two particles within

the support of the interpolation kernel have the same color. Particle-to-mesh interpolation

then visits the particles ordered by color to achieve data independence. This coloring

6.7. PARALLEL FAST MULTIPOLE METHOD 113

CPU time vector operation ratio vector length

colored 2.69 s 99% 230.6 words

classical 30.1s 0.36% 4.1 words

Table 6.2: Comparison of the vector performance of classical particle-to-mesh interpolation and

the present coloring scheme.

scheme enables vectorization of particle-to-mesh interpolations as confirmed by a test on

the NEC SX-5 vector computer (Table 6.2). Without this coloring scheme, interpolation in

hybrid particle-mesh methods would be prohibitively expensive on vector architectures.

6.7 Parallel Fast Multipole Method

The Fast Multipole Method (FMM) can evaluate Dirichlet and free-space boundary con-

ditions for the computationally more efficient Mulit-grid solver. The implementation of

the parallel FMM module is based on the topology, tree, and mapping routines provided

by the library core. Hereby, the FMM module creates multiple temporary topologies. The

first topology comprises the sub-domains defined at the level of the tree that holds at least

as many sub-domains as there are processors. Subsequent levels of the FMM tree structure

are also declared as PPM topologies. By means of the user-defined assignment scheme,

individual processors operate on disjoint sub-trees to minimize the amount of communi-

cation. The particles are then mapped according to the finest topology, which contains all

the leaf boxes as sub-domains. The PPM tree directly provides index lists to the particles

in each box. This allows straightforward computation of the expansion coefficients on the

finest level, without requiring communication. The computed leaf coefficients are shifted

to parent boxes by recursively traversing the tree toward its root, cf., e.g., [32]. Since the

topologies are defined such that each processor holds a disjoint subtree, the expansions

can be shifted without communication.

To evaluate the potential at the locations of a set of target particles, these particles are

first mapped onto the finest-level PPM topology. A pre-traversal of the tree then decides

114 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

which expansion coefficients and source particles are needed for each target point. This is

done by traversing the tree from the root down to the leafs using a stack data structure. On

each level, we check if the corresponding box is already far enough away from the target

particle. This is done by comparing the distance (D) between the target particle and the

center of the box to the diameter (d) of the box. If the ratio D/d > θ, the expansion of

that box is used and the traversal stops.

When evaluating the potential, expansion coefficients or particles from other proces-

sors may be needed. Before evaluating the potentials, the expansion coefficients from

all processors are thus globally communicated. This can be done since the data volume

of the coefficients is much smaller than the original particle data. Required particles are

received on demand as additional ghosts using the regular PPM ghost mapping routines.

6.8 Mesh-Based Solvers

Meshes can be used to solve the field equations associated with long-range particle in-

teractions [84] or to discretize the differential operators in the governing equations of the

simulated physical system. These operators are often local and their computational cost

scales linearly with the number of particles or mesh points.

A large class of pair potentials in particle methods can be described by the Poisson

equation as it appears in MD of charged particles via electrostatics (Coulomb potential),

fluid mechanics in stream-function vorticity formulation (Biot-Savart potential), and as-

trophysics (gravitational potential). The Poisson equation is expressed as:

∇2Φ = ρ(x, y, z). (6.1)

The PPM library provides Poisson solvers based on FFTs and geometric MultiGrid (MG).

The FFT-based Poisson solver parallelizes a multi-dimensional FFT using a sequence of

one- or two-dimensional FFTs performed on pencil and slab topologies (cf. Section 6.3).

A single three-dimensional Fourier transform thus consists of mapping the data onto a

temporary xy-slab topology, performing a two-dimensional FFT, mapping onto a tem-

6.9. ODE SOLVERS 115

porary z-pencil topology, and performing a one-dimensional FFT. The actual serial one-

dimensional or two-dimensional FFTs are performed using the external libraries fftw or

MathKeisan (on NEC SX vector architectures).

The geometric MG method is implemented in PPM as a fast iterative method for solving

the Poisson equation. The advantage of parallel MG solvers consists in restricting com-

munication to the ghost layers whereas the corresponding FFTs require several global

mappings. The PPM MG supports both the V and W cycle [169]. The Laplacian is dis-

cretized using five and seven point stencils in two and three dimensions, respectively.

As residual smoother we employ the red-black successive over-relaxation scheme, which

includes the Gauss-Seidel smoother as a special case. Furthermore, the full-weighting

scheme [169] is used for the restriction of the residual, and bilinear (in two dimensions)

or trilinear (in three dimensions) interpolation for the prolongation of the function correc-

tions [169].

6.9 ODE Solvers

Simulations using particle methods entail the solution of systems of ODEs as outlined in

Section 2.1. The characteristics of the Initial Value Problems (IVP) represented by these

ODEs explicitly reflect the physics of the system that is being simulated.

The PPM library provides a set of explicit integration schemes to solve these IVPs. The

ODE solver of PPM is designed as a “black-box” solver. The user selects the method to

be used and provides as a function pointer a routine that computes the right-hand sides of

the ODEs. Both allocation of storage (for the stages of multi-step schemes) and the actual

computation of the stages is performed by the library. Second order ODEs are solved by

transforming them into a system of first order problems and parallelism is achieved by

mapping the integrator stages along with the other particle quantities (cf. Section 6.4).

Thus, at the last stage of the integrator, the previous stages are available on the processor

that currently hosts the particles, and the final particle update is completed without further

communication. Low-storage schemes have the additional advantage of requiring little

116 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

communication. The set of available integrators includes forward Euler with and without

super time stepping [6], 2-stage and 4-stage standard Runge-Kutta schemes, Williamson’s

low-storage third order Runge-Kutta scheme [182], and 2-stage and 3-stage TVD Runge-

Kutta schemes [151].

6.10 Parallel I/O

File I/O in distributed parallel environments exist in two different modes: distributed and

centralized. By distributed we denote the situation where each processor writes its part of

the data to its local file system. Centralized I/O on the other hand will produce a single

file on one of the nodes, where the data contributions from all processors are stored. The

latter is convenient for small or aggregated data, or for writing files that will later be read

on a different number of processors, e.g. to continue an interrupted simulation.

The PPM library provides a parallel I/O module which supports both binary and ASCII

read and write operations in both modes, distributed and centralized. The I/O mode is

transparent to the client application. Write operations in the centralized mode can con-

catenate or reduce (sum, replace) the data from individual processors; read operations can

transparently split the data in equal chunks among processors or send an identical copy

to each one. The basic assumption behind the split mode is that no processor will be able

to hold all the data in memory at any time. To improve performance of the centralized

mode, network communication and file I/O are overlapped in time using non-blocking

MPI calls.

6.11 Adaptive trees

The tree construction in the PPM library provides non-adaptive and adaptive binary trees,

quad-trees, and oct-trees. At any stage of the tree, the space is subdivided into M boxes

{Bk}. The indices i and j are used to denote coordinate directions. Adaptivity and

subdivision behavior are guided by two cost functions φ1, φ2. Both cost functions are

6.11. ADAPTIVE TREES 117

linear combinations of the three cost contributions: particle costs cp (user-specified or

unity per particle), mesh points (number of mesh points in the box mB =
∏

mB,i), and

geometry (volume of the box |B| =
∏ |B|i), with user-provided coefficients α, β, γ:

φ{1,2}(Bk) = α{1,2}

∑

p∈Bk

cp + β{1,2}mBk
+ γ{1,2}|Bk|. (6.2)

The first cost function φ1 guides adaptivity of the tree since the next subdivision will be

applied to the box BK of largest φ1. The second cost function φ2 defines the direction(s)

of subdivision and position of the subdivision plane(s). Suppose BK is to be subdivided

next. In order to create the minimum φ2-cut when subdividing a box, the tensor of intertia

T is computed from the particle locations xp = (xp,i) and costs cp as:

Tii =
∑

p∈BK

(
∑

j 6=i

x2
p,j

)

cp , Tij =
∑

p∈BK

xp,ixp,jcp . (6.3)

The eigenvectors vr of T are scaled with the corresponding eigenvalue λr: νr =

λr(vr/|vr|) and projected onto the unit coordinate vectors ei. The number of mesh points

in this direction mB,i and the length of the box in this direction |B|i are normalized and

added to form a score value s for each coordinate direction

s(ei) = α2

∑

r

ei · νr + β2

(
∑

j

mBK ,j

)−1

mBK ,i + γ2

(
∑

j

|BK |j
)−1

|BK |i . (6.4)

The subdivision directions (1, 2, or 3) are chosed in order of ascending score. The client

program can however specifically disallow subdivisions in certain directions to enforce

pencil-type or slab-type boxes. The actual position of a cut perpendicular to direction I

is determined as the corresponding component of the center of mass of φ2 within the box

BK

φ2(BK)−1

[

α2

∑

p∈BK

xp,Icp + µI(BK) (β2mBK
+ γ2|BK |)

]

, (6.5)

subject to the constraint that a client-specified minimum box size is not under-run. Here,

µ(Bk) = (µi(Bk)) denotes the geometric center of box Bk. To terminate the tree, multiple

concurrent termination criteria can be prescribed.

118 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

6.12 Parallel Efficiency Benchmarks

The parallel efficiency of the library is measured based on the following tests in this thesis:

1. The potential evaluation using FMM,

2. The solution of the scalar Poisson equation using geometric MG,

3. The solution of the scalar Poisson equation using FFTs, and

4. Simulation of compressible viscous flow induced by a double shear layer using

remeshed Smooth Particle Hydrodynamics (rSPH).

In addition, we illustrate the application of the library to problems in fluid dynamics

with the simulation of a compressible vortex ring using rSPH.

Performance of the PPM library is tested for both a fixed-size and a scaled-size problem

for all cases except the diffusion simulation. In the fixed-size problems, the number of

mesh points and particles is kept constant, i.e. the work load per processor decreases

with increasing number of processors. In the scaled problems, mesh point and particle

numbers grow proportionally to the number of processors, resulting in a constant work

load per processor. Timings and parallel efficiency figures are collected on the IBM p690

computer of the Swiss National Supercomputing Centre (CSCS). The machine consists

of 8 Regatta nodes with 32 1.3 GHz Power4 processors per node. Within each node, it is

configured in 4 groups with 8 processors sharing 12 GB of memory. Each processor has a

peak performance of 5.2 GFlop/s, and the nodes are connected by a 3-way Colony switch

system.

In each test, we measure the elapsed wall-clock time tij for each time step j on each

processor i = 1, . . . , Nproc. To account for synchronous communication steps, we report

the maximum of these times over all processors. This maximum is averaged over 5 to 10

samples to compute speedup S and efficiency e:

S(Nproc) =
t(1)

meanj maxi tij(Nproc)
· N (Nproc)

N (1)
, (6.6)

6.12. PARALLEL EFFICIENCY BENCHMARKS 119

e(Nproc) =
S(Nproc)

Nproc
, (6.7)

where t(1) is the time on a single processor (linearly extrapolated if not measured),

tij(Nproc) is the time on Nproc processors, N(1) is the problem size on a single processor,

and N(Nproc) is the problem size on Nproc processors. To account for the O(N log N)

scaling of the FFTs, the second factor of the speedup is accordingly adjusted in the bench-

marks of the FFT-based Poisson solver.

Vectorization and parallel efficiency on vector machines are tested using the NEC SX-5

computer at CSCS. This is a shared memory machine with 16 NEC SX-5 vector proces-

sors. Each processor has a peak performance of 8 GFlop/s and 64 vector registers of a

length of 256 words (2048 Bytes) each.

In addition to the benchmark tests, simulations are performed on a distributed memory

cluster consisting of 16 2.2 GHz AMD Opteron 248 processors running under Linux. The

nodes of this cluster are connected by a switched gigabit ethernet network.

6.12.1 The Fast Multipole Method

The test cases for the PPM FMM involve 105 source points with a uniformly random distri-

bution in a cubic box. The potential induced by these points is computed at the locations

of 105 target points, also uniformly randomly distributed in the same cube. Fig. 6.2(a)

shows the wall-clock time as a function of the number of particles. The acceptance factor

θ for the tree traversal is set to 1.5, and we vary the expansion order (l). The scaling of

the FMM is compared to the O(N2) scaling of the direct evaluation method and reveals

the expected O(Nlog(N)) behavior. Fig. 6.2(b) shows the parallel speedup of the PPM

FMM on up to 16 processors of the Linux cluster. The wall-clock time is 452 seconds on

1 processor and 36.8 seconds on 16. The observed loss in efficiency is mainly caused by

the global communication of the expansion coefficients.

120 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0.0 0.2 0.4 0.6 0.8 1.0

Npart × 10−5

E
la

p
se

d
ti

m
e

[s
]

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16 18 20

Nproc

S
p

ee
d

u
p

(b)

Figure 6.2: Performance of the Fast Multipole Method (FMM) implementation in the PPM library.

(a) Serial performance of the FMM as function of number of particles and the order (l) of the

expansion: -+-: direct calculation; -�-: l = 9; -∗-: l = 5; -×-: l = 1. (b) Parallel speedup

using 105 particles and l = 5 on up to 16 nodes of the 2.2 GHz Opteron Linux cluster. —: linear

scaling; +: measurement.

6.12.2 Parallel Multigrid Poisson solver

We test the performance of the PPM MG field solver by solving the scalar Poisson Eq. (6.1)

with the right hand side

ρ(x, y, z) = sin(2πx) sin(2πy) sin(2πz), x, y, z ∈ [0, 1] , (6.8)

subject to periodic boundary conditions. The initial value of Φ is zero everywhere and we

use the V(2,1) cycle with one smoothing step at the finest level.

We conduct three tests. The first involves the fixed case with 256 × 256 × 256 mesh

points, while the two others are scaled cases, one starting from a 128 × 128 × 128 mesh,

the other one starting from 256× 256 × 256. Efficiency and speedup for the scaled cases

are shown in Fig. 6.3 and for the fixed case in Fig. 6.4. We observe a strong decrease

in the parallel efficiency up to 8 processors due to the congestion of the shared memory.

This is removed when using only one processor per node in a pure distributed memory

setup, cf. Figs. 6.3 and 6.4, and the efficiency improves to 90% on 16 processors for the

scaled case. The effective efficiency based on the timing obtained on 8 processors is 92%

for the large scaled case on 64 processors. The efficiency of the PPM MG solver for a

6.12. PARALLEL EFFICIENCY BENCHMARKS 121

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64 128 256

Nproc

S
p

ee
d

u
p

0.0

0.2

0.4

0.6

0.8

1.0

 1 2 4 8 16 32 64 128 256

Nproc

E
ffi

ci
en

cy

Figure 6.3: Parallel speedup and efficiency of the MG Poisson solver for the scaled-size problem.

The initial mesh resolution on one processor is 256 × 256 × 256 (+) and 128 × 128 × 128 (×),

respectively. Using only one processor per node in the large case, the bottleneck of the shared

memory is removed (∗). Each point is averaged from 5 samples, error bars indicate min-max

span. All timings are performed on the IBM p690.

1024 × 1024 × 1024 system is 66% for the large scaled case on 64 processors. For this

system, the elapsed time is 10.5 seconds per V-cycle, and thus 42 seconds for the 4 V-

cycles needed to reduce the L2 error to 10−4. A system with half a billion unknowns is

solved in the small scaled case on 242 processors at 48% efficiency in 1.7 seconds per V-

cycle. This compares well with the 41% efficiency achieved by the Prometheus multigrid

library [5] on 128 IBM Power3 processors for the same problem size.

The vectorization of the PPM MG solver is tested on the NEC SX-5 using up to 8 proces-

sors. The PPM MG sustains a performance of 2.4 GFlop/s per processor (30% of peak

performance) with a vector operation ratio of 95% and a parallel efficiency of 96%. On

this machine, a single V cycle on a 512 × 512 × 512 system takes 1.21 seconds on 8

processors.

6.12.3 Parallel FFT-based Poisson solver

We test the parallel performance of the FFT-based Poisson solver and compare it to the

MG solver by solving the same scalar Poisson Eq. (6.1) with the same right hand side

122 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64 128 256

Nproc

S
p

ee
d

u
p

0.0

0.2

0.4

0.6

0.8

1.0

 1 2 4 8 16 32 64 128 256

Nproc

E
ffi

ci
en

cy
Figure 6.4: Parallel speedup and efficiency of the MG Poisson solver for the fixed-size problem

with 256× 256× 256 mesh points on 2 to 128 processors (+). Using only one processor per node

in the large case, the bottleneck of the shared memory is removed (×). Each point is averaged

from 5 samples, error bars indicate min-max span. All timings are performed on the IBM p690.

Eq. (6.8), subject to periodic boundary conditions. All Fourier transforms are performed

using the parallel FFT routines of the PPM library as described in Section 6.8.

The parallel speedup and efficiency for the scaled problem as shown in Fig. 6.5 exhibit

two characteristic regions. The first one ranges from 1 to 8 processors, the second one

from 8 and beyond. From 1 to 8 processors the efficiency drops significantly, due to

conflicts and congestion in the shared memory architecture within each compute node.

This is verified in a separate benchmark (Fig. 6.5: ×), in which only one processor per

node is used. In this case, the congestion is removed and the efficiency significantly

improves to 68% on 16 processors for the scaled case. Solving the Poisson equation to

machine precision on a 128×128×128 mesh takes 0.6 seconds on a single processor. The

corresponding scaled system on 64 processors (512 × 512 × 512) requires 2.4 seconds.

Speedup and efficiency for the fixed-size problem are shown in Fig. 6.6. Again, the

scaling improves beyond 8 processors, similiar to the scaled case.

6.12. PARALLEL EFFICIENCY BENCHMARKS 123

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64 128 256

Nproc

S
p

ee
d

u
p

0.0

0.2

0.4

0.6

0.8

1.0

 1 2 4 8 16 32 64 128 256

Nproc

E
ffi

ci
en

cy
Figure 6.5: Parallel speedup and efficiency of the FFT-based Poisson solver for the scaled-size

problem starting with 128×128×128 mesh points on one processor (+). Using only one processor

per node, the bottleneck of the shared memory is removed (×). Each point is averaged from 5

samples, error bars indicate min-max span. All timings are performed on the IBM p690.

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64 128 256

Nproc

S
p

ee
d

u
p

0.0

0.2

0.4

0.6

0.8

1.0

 1 2 4 8 16 32 64 128 256

Nproc

E
ffi

ci
en

cy

Figure 6.6: Parallel speedup and efficiency of the FFT-based Poisson solver for the fixed-size

problem with 512 × 512 × 512 mesh points on 4 to 128 processors. Each point is averaged from

5 samples, error bars indicate min-max span. All timings are performed on the IBM p690.

124 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

6.12.4 Three-Dimensional Remeshed Smooth Particle Hydrodynamics

We consider a client application based on a novel, computationally efficient formulation

of the remeshed SPH (cf. Chapter 2). The rSPH client is applied to the simulation of a

three-dimensional compressible double shear layer [63]. In order to measure the parallel

performance, we consider a computational domain fully populated with particles so that

the reported performance measures are independent of the particular flow problem. We

furthermore present results from the application of the present rSPH methodology to the

evolution of a compressible vortex ring (cf. Chapter 4), demonstrating the stability and

accuracy of the method.

Parallel speedup, timing and efficiency

The speedup and parallel efficiency of the rSPH client are shown in Figs. 6.7 and 6.8

for the scaled and fixed-size problem, respectively. The largest simulation considered in

this rSPH test case comprises 268 million particles and achieves a parallel efficiency of

91% on 128 processors. The efficiency on 32 processors using 67 million particles is

also 91%, which compares well with the 85% efficiency of the GADGET SPH code by

Springel et al. [155] on 32 processors of the same computer model (IBM p690). The

efficiency in the fixed-size problem ranges between 100% and 84%. One time step of

the simulation using 16.8 million particles takes 196.9 seconds on 4 processors and 7.3

seconds on 128 processors.

The communication overhead of the present rSPH client is assessed using 16 million

particles. The fraction of time spent in communication is less than 13% of the total com-

putational time in all cases (Table 6.3). Using 4 processors, only 5% of the total time

is spent in communication. The communication effort increases by a factor of 2.5 when

using 64 times more processors. This demonstrates the high efficiency of the mapping

and communication routines in the PPM library.

6.12. PARALLEL EFFICIENCY BENCHMARKS 125

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64 128 256

Nproc

S
p

ee
d

u
p

0.0

0.2

0.4

0.6

0.8

1.0

 1 2 4 8 16 32 64 128 256

Nproc

E
ffi

ci
en

cy

Figure 6.7: Parallel speedup and efficiency of the PPM rSPH client for the scaled-size problem

starting with 2 million particles on one processor. Each point is averaged from 5 samples, error

bars indicate min-max span. All timings are performed on the IBM p690.

10
0

10
1

10
2

10
3

 1 2 4 8 16 32 64 128 256

Nproc

S
p

ee
d

u
p

0.0

0.2

0.4

0.6

0.8

1.0

 1 2 4 8 16 32 64 128 256

Nproc

E
ffi

ci
en

cy

Figure 6.8: Parallel speedup and efficiency of the PPM rSPH client for the fixed-size problem with

16.8 million particles on 4 to 128 processors. Each point is averaged from 5 samples, error bars

indicate min-max span. All timings are performed on the IBM p690.

126 CHAPTER 6. PARALLEL PARTICLE SIMULATIONS

Nproc total time [s] communication [s] in percent

4 195 10 5%

16 50 4 8%

64 14 1.2 11%

128 7 0.8 12%

Table 6.3: Communication-to-computation ratio of the PPM using the rSPH client with 16 million

particles.

Chapter 7

Particle Immersed Boundary Method

7.1 Introduction

Biofluid dynamics is characterized by the interaction of elastic incompressible tissue with

viscous incompressible fluid. In some cases the elastic tissue is active, like muscle, which

means that it can act a source of mechanical energy. The Immersed Boundary Method

is both a mathematical formulation and a computational method for the biofluid dynamic

problem. In the immersed boundary formulation, the equations of fluid dynamics are used

in an unconventional way, to describe not only the fluid but also the immersed tissue with

which it interacts. In the computational scheme motivated by this formulation, the fluid

equations are solved on a fixed (Eulerian) cubic lattice, where elastic forces are computed

from a Lagrangian representation of the immersed elastic tissue. The material points

of the tissue move freely through the cubic lattice of the fluid computation. The two

components of this Eulerian/Lagrangian scheme are linked by a smoothed version of the

Dirac delta function, which is used to apply elastic forces to the fluid, and to interpolate

the fluid velocity at the representative material points of the elastic tissue. A key aspect of

this methodology is the simple handling of moving complex boundaries because it does

not require an adaptive computationally expensive mesh generation. This methodology

has been applied to the heart and its valves by Peskin [124] who introduced this method

within this context.

Fadlun and Verzicco et al. [59] proposed an immersed boundary method for finite-

difference methods where the velocity of fluid cells close the complex boundary is inter-

128 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

polated linearly between the boundary and the neighboring fluid cell. This method leads

to second order accuracy and requires a accurate distance-information to the boundary at

the all neighboring fluid cells. Kim [93] presented a similar approach for finite-volume

methods combined with a mass source to increase the accuracy.

These approaches, however, are limited to Eulerian methods for incompressible flows.

We present a novel particle Immersed Boundary method (pIBM) that is applicable to

Lagrangian particle methods, such as smoothed particle hydrodynamics. The geometry of

the body is described by Lagrangian points. A forcing term is evaluated on the boundary

points such that the no-slip boundary condition on the body is fulfilled. The extrapolation

of the forcing term onto the neighboring particles involves high-order B-Splines kernel.

The governing equations of the fluid along with general initial and boundary conditions

are introduced in Chapter 4.

We demonstrate the performance of the pIBM on channel flow, flow past a circular cylin-

der and sphere. We characterize the flow for various Reynolds numbers with experimental

and numerical results presented in the literature.

7.2 Particle Presentation of Immersed Boundaries

7.2.1 Particle Immersed Boundary Method (pIBM)

In pIBM (Fig.7.1), a forcing term f is added to the momentum equation (Eq.(4.2)) such

that the no-slip condition is satisfied on the boundary.

ρ
Du

Dt
= −∇p + ∇.τ + f (7.1)

We approximate the material derivative by a differential quotient:

ρi
ui+1 − ui

∆t
= −∇pi + ∇.τi + fi (7.2)

Solving for fi and assuming we reach the desired velocity within this time step (ui+1 =

7.2. PARTICLE PRESENTATION OF IMMERSED BOUNDARIES 129

Figure 7.1: Particle Immersed Boundary Method. The immersed boundary is discretized using

boundary points that can only impact flow particles within the kernel support.

udesired) yields

fi = ρi
udesired − ui

∆t
− (−∇pi + ∇.τi) (7.3)

Note that the forcing term f acts locally on the boundaries where a no-slip condition is

imposed and the velocity udesired is known. The boundary is described by boundary points

associated with a surface area. We employ a Kernel based on B-Splines for a dirac delta

approximation of the forcing term f . We use particle-mesh, mesh-particle interpolation

schemes for performance reasons (cf. Section 6.6).

Our implementation involves the separation of the forcing term into two parts, one part

fip is evaluated on the particles , the other on the boundary points fib:

fi = ρi(fip + fib) (7.4)

fip =
−ui

∆t
− 1

ρi

(−∇pi + ∇.τi) (7.5)

fib =
udesired

∆t
(7.6)

130 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

The pIBM consists of the following steps:

1. Evaluation of the first part of the forcing term fip on the particle

2. Interpolation of fip from the particles onto the boundary points via mesh.

3. Evaluate forcing term fi on the boundary points by adding fib

4. Interpolation of forcing term f from the boundary points to the particles via mesh.

5. Evolving particles according to the governing equations including forcing term f

7.2.2 Particle Equations

The particle position xp, mass mp, volume vp, and velocity component ui,p evolve by the

following system of ordinary differential equations derived from Eq.(4.1),(4.2) and (4.3)

dxp

dt
= up

dmp

dt
= 0

dvp

dt
= 〈∇ · u〉pvp (7.7)

dui,p

dt
=

vp

mp

(

−〈 ∂p

∂xi
〉p + 〈∂τij

∂xj
〉p
)

+ fi,p

where 〈�〉p denotes the derivative approximation on a particle p (cf. Eq. (2.20)) and

〈∂τij

∂xj

〉p = µ

(

〈∂
2ui

∂x2
k

〉p +
1

3
〈 ∂2ul

∂xi∂xl

〉p
)

(7.8)

pp =
mp

vp

RT0. (7.9)

In the present study, the Laplacian approximation 〈∂2ui

∂x2

k

〉p is evaluated using the particle

strength exchange approach [49] to increase the stability of the simulations by suppressing

spurious small scale structure in the range of the Nyquist frequency.

〈∂
2ui

∂x2
k

〉p =
∑

p

vp (Φp − Φq)∇2ζε(xq − xp) (7.10)

ζε =
15

ε−3π

1

|x|10 + 1
(7.11)

7.3. RESULTS 131

The second order kernel ζε was successfully applied in diffusion simulations involving

complex geometries [140].

The interface between the body and the fluid is captured using the Particle Level Set

Method presented in Chapter 3. The level set function [81, 82] represents the signed

distance function to the interface. The particles carry the level set information as a scalar

attribute Φp that remains constant during the time integration:

dΦp

dt
= 0 (7.12)

We reinitialize the level set value after every remeshing to maintain the signed distance

property. The exact knowledge of the body shape allows the reinitialization of the level

set function with its analytical value.

The inlet and outlet boundary conditions are imposed by using image particles that have

the same attributes as the flow particles. The boundary particles interact with the flow

particles such that the boundary conditions are satisfied. The no-slip boundary condition

on the body surface is handled by the proposed particle Immersed Boundary Method.

7.3 Results

We demonstrate the performance of the presented Immersed Boundary Method on sev-

eral test problems and compare with results presented in the literature. We consider the

Poiseuille flow, flow past a cylinder and sphere and anguilliform swimming. The compar-

ison is based on the drag/lift coefficients and the Strouhal numbers.

7.3.1 Poiseuille flow

A classic, and simple, problem in viscous, laminar flow involves the steady-state veloc-

ity and pressure distribution for a fluid moving laterally between two plates. The flow is

driven by a pressure gradient in the direction of the flow, and is retarded by viscous drag

along both plates, such that these forces are in balance. The simulation domain was con-

sidered to be a unit square with periodic boundary condition at the inlet/outlet boundary

132 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

10
1

10
2

10
−4

10
−3

10
−2

10
−1

L/ε

L
∞
−

er
ro

r

Figure 7.2: Poiseuille flow: L∞− error velocity (solid line) of the particle Immersed Boundary

Method (pIBM) compared to 2nd order scaling (dashed line)

(x=0, x=1) and no-slip conditions at the plates (y=0, y=1). We consider a fluid density

with an initial density of ρ = ρ0 = 1 at a Reynolds number of Re = 100 and a Mach

number of M = 0.5. The fluid is initially at rest and accelerated by an constant pressure

gradient of 0.001. The time integration scheme is a Runge Kutta scheme of 2nd order

with a time step of δt = 0.0005 in all cases, i.e. the Courant-Friedrich-Lewy number

CFL = c0δt/h < 0.2 in all cases. For the error analysis the maximal difference in the

velocity profile to the analytical solution is evaluated when the profile becomes stationary

at time T = 70. The error normalized by the maximal velocity is shown in Fig. 7.2. The

error analysis shows the flow simulations are second order accurate in space.

7.3.2 Flow past a cylinder

We present the simulation of flow past a cylinder for various Reynolds numbers to demon-

strate the performance of the particle Immersed Boundary Method and compare with pre-

7.3. RESULTS 133

vious results presented in the literature. The flow past a circular cylinder is associated

with various instabilities. These instabilities involve the wake, the separated shear layer

and the boundary layer depending on the Reynolds number. Up to Re ≈ 47, the flow

is steady with two symmetric vortices on each side of the wake centre line. The first

wake instability, manifestation of a Hopf bifurcation, occurs at Re ≈ 47. For Re > 47,

although remaining laminar, the flow becomes unsteady and asymmetric. Von Karman

vortex shedding is observed for slightly larger Re. At Re ≈ 190, three-dimensional in-

stabilities, such as formation of vortex loops, deformation of primary vortices and stream

wise and span wise vortices appear in wake. The wake flow undergoes a series of complex

three-dimensional instabilities, making the flow eventually turbulent. Beyond a certain

critical Re, the shear layer separating from the upper and lower surface of the cylinder

starts becoming unstable via the Kelvin-Helmholtz mode of instability. The transition

point, beyond which the separated layer becomes unstable, moves upstream with the in-

crease of the Reynolds number. At Re ≈ 2 · 105, the boundary layer on the cylinder

surface undergoes a transition from laminar to turbulent.

We use the Runge Kutta 4th order scheme for time integration with constant time step of

∆t = 0.005. The domain size is set to 15d × 30d where d is the diameter of the cylinder.

The Mach number M is 0.05 The solution is remeshed after every time step. The fluid is

initially at rest and accelerated by a small artificial force until the desired inlet velocity is

reached to avoid the development of pressure wave at the boundary.

Fig. 7.3 and Fig. 7.4 shows the vorticity field at Re = 100 and Re = 1000 respec-

tively. The instability is trigged by a pertubation of the inlet velocity in lateral direction

as described by Plouhams [128]. The vorticity field match well with the Finite Element

solutions presented by Singh et al. [153] in both cases. The simulations require a particle

spacing of h = 0.078d for Re = 100 and h = 0.052d for Re = 1000.

Fig. 7.5 shows the variation of the drag coefficient with the Reynolds number. The

simulation results of the pIBM are compared with experimental results and computations

considering incompressible flow. It is observed that the values from present computations

match well the experiments for Re < 200. In particular, Table 7.1 shows the excellent

134 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

Figure 7.3: Flow past a cylinder at Re = 100. Contour levels of the vorticity contours at

(±20,±15,±10,±7.5,±5,±2.5)

Figure 7.4: Flow past a cylinder at Re = 1000. Contour levels of the vorticity contours at

(±20,±15,±10,±5)

7.3. RESULTS 135

agreement to experiments and previous simulation results with respects to drag coefficient

and Strouhal number.

Beyond Re = 180 the wake flow undergoes three-dimensional transitional instabilities.

Therefore, for Re > 200 the drag coefficient and the Strouhal number are overpredicted

by two-dimensional computations.

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

Reynolds number Re

D
ra

g
co

ef
fi

ci
en

t

Figure 7.5: Flow past a cylinder: Time averaged drag coefficient of pIBM (circles) versus

Reynolds number in comparison with experimental data (solid line, taken from [136]) , a Spectral

Method (dashed line, taken from [153]) and a FEM solution (crosses) [153]

Fig. 7.6 shows the pressure coefficient of the time averaged flow along the cylinder

surface for Re = 100 compared to the result of Park et al. [123]. The angle θ is measured

from the stagnation point of the incoming flow towards the outlet. The pressure coefficient

Cp agrees well with the results of Park et al. [123]. The pressure field tends to reveal noise

at the angle 10◦ < θ < 50◦ due to unresolved pressure waves in the compressible fluid.

136 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

Table 7.1: Flow past a cylinder: Comparison with previous simulations and experiments

Re = 100, D = 0.2 Drag coefficient Strouhal number

pIBM 1.38 0.162

Henderson [80] 1.35 -

Park et al. [123] 1.33 0.165

Silva et al. IBM [152] 1.39 0.162

Singh et al. FEM [153] 1.41 0.164

Kim et al. FV IBM [93] 1.33 0.165

Wieselberger (Exp.) taken from [136] 1.45 -

Williamson (Exp.) [181] - 0.165

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

angle θ [degree ◦]

P
re

ss
u

re
co

ef
fi

ci
en

t
C

p
[-

]

Figure 7.6: Flow past a cylinder at Re = 100: Pressure coefficient Cp (circle) versus angle in

comparison with the solution of Park [123] (solid line)

7.3. RESULTS 137

Table 7.2: Flow past a sphere: Comparison with previous simulations

Re = 100 Drag coefficient Lift coefficient Strouhal number

pIBM (M =0.1) 1.15 - -

Fornberg [61] 1.09 - -

Kim et al. FV IBM [93] 1.09 - -

Fadlun et al. [59] 1.08 - -

Re = 300

pIBM (M =0.1) 0.71 0.062 0.133

Johnson and Patel [88] 0.66 0.069 0.137

Kim et al. FV IBM [93] 0.66 0.067 0.134

Ploumhans et al. [128] 0.68 0.066 0.137

7.3.3 Flow past a sphere

Wakes of incompressible fluid behind spheres are observed to be steady for Reynolds

numbers below 270. Above this limit vortices break off and are periodically released to

form vortex loops that are connected like in a chain. We consider the flow past a sphere at

M = 0.1 and Re = 100 and Re = 300. Table 7.2 shows that the drag and lift coefficient

of the pIBM compare well with the simulation results considering incompressible fluid

showing a discrepancy in the range of 5% to 10%. The domain size is 10d × 10d × 15d,

the particle spacing h = 0.052d where d is the diameter of the sphere. The spacing of the

boundary points is in average the same. The time integrator is Runge Kutta 4 using a time

step of ∆t = 0.005. Fig. 7.7 shows the three-dimensional vorticity structure at Re = 300.

The surface of the vortices is identified by the λ2 method of Jeong and Hussain [87]. At

Re = 300 the flow is unsteady and the vortices shed asymmetrically. This flow behavior

matches with the results of Johnson and Patel [90]. The agreement in the flow structure,

as well as in the drag and lift coefficients indicates that the present method accurately

captures the three-dimensional vorticity field.

138 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

Figure 7.7: Flow past a sphere at Re = 300. The vortices behind the sphere are visualized using

the λ2 method [87]. The color represent the local flow velocity.

7.3.4 Falling Sphere

The problem of a falling sphere is a simple test case involving fluid-structure interactions.

Kern et al. [92] presented this test case to validate the fluid-body coupling procedure. We

consider a rigid sphere of density ρs = 1.041 > ρ0 at Reynolds number Re = 100 and

at Mach number of M = 0.25. The sphere is released from rest and accelerates until

it reaches its asymptotic falling velocity. The sphere diameter d is set to d = 1 and the

gravity g = 20. The size of the periodic domain is set to 6 × 20 × 6, the time integration

is Runge Kutta 2nd order with a time step of ∆t = 0.001. Remeshing is applied every

time step. An asymptotic falling velocity of U = 0.95 is reached at time t = 10 using

a particle spacing of 1/16. This velocity is in reasonable agreement with the results of

Johnson and Patel [88]. Table 7.3.4 summarizes the results of the falling sphere.

7.4. SIMULATION OF ANGUILLIFORM SWIMMING 139

Table 7.3: Falling sphere: Convergence study of the falling velocity

Particle spacing h) Falling velocity

(∆t = 0.001) (t=10)

1/8 1.02

1/16 0.95

1/32 0.93

Johnson et al. [88] 1.00

Time step ∆t Falling velocity

(h = 1/16) (t=2)

0.004 0.602

0.002 0.592

0.001 0.596

0.0005 0.595

7.4 Simulation of Anguilliform Swimming

Complex structures interacting with ambient fluids appear in many biological systems. To

demonstrate the performance of the pIBM approach, we present the simulation of anguil-

liform swimming of a self-propelled eel-like body immersed in a viscous fluid. Anguil-

liform swimmers, such as lamprey, propel themselves by propagating curvature waves

backwards along the body. We compare the simulations results with an incompressible

finite-volume solution presented by Kern et al. [92]. The solution of Kern et al. is second

order accurate in space and first order accurate in time using an adaptive grid.

7.4.1 Introduction

The motion of the body is described by the two-dimensional deformation of the mid-line

based on the simulations of Carling et al. [26]. The lateral displacement of the mid-line

ys(s, t) in a local system is defined as

ys(s, t) = 0.125
s/L + 0.03125

1.03125
sin(2π(s/L − t/T)) (7.13)

where s is the arc length along the mid-line of the body (0 ≤ s ≤ L), t is the time, T the

periodic time.

The three dimensional body of the swimmer is described by spatially varying ellipsoid

140 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

cross sections. The length of the two half axis w(s) and h(s) are defined as

w(s) =







√
2whs − s2 0 ≤ s ≤ sb

wh − (wh − wt)
(

s−sb

st−sb

)2

sb ≤ s ≤ st

wt
L−s
L−st

st ≤ s ≤ L

(7.14)

h(s) = b

√

1 −
(

s − a

a

)2

(7.15)

where wh = sb = 0.04L, st = 0.95L, wt = 0.01L, a = 0.51L and b = 0.08L. We

apply a no-slip boundary condition on the surface of the body. The mid-line of the body

is embedded into a non-inertial (x′, y′)-system where the center of mass of the deforming

body remains and the total angular momentum is conserved. The fluid-body interactions

are computed in the inertial system (x,y,z) where the swimmer is subject to rigid body

translation and rotation. Thus, the motion of the body in the global system (O, x, y, z) is

described by the Newtons equations of motion:

mẍc = F, (7.16)

İzϕ̇c + Izϕ̈c = Mz, (7.17)

where m is the total mass of the immersed body, xc represents the position of the center

of mass, ϕc the global angle with respect to the initial position, F and Mz are the fluid

force and yaw torque acting on the body surface. The time-dependency of the inertial

moment İz about the yaw axis is also taken into account although it is small compared to

the inertial moment itself.

We set the viscosity of the fluid to be µ = 1.4 · 10−4, the body length L = 1, the density

ρ0,fluid = ρbody = ρ = 1 resulting in a Reynolds number of 3850 based on the final

swimming speed.

The fluid forces acting on the body are shown as non-dimensional coefficients C‖ =

F‖/(0.5ρU2
0S) and C⊥ = F⊥/(0.5ρU2

0S) parallel and lateral to the swimming direction,

where S represents the circumference in two-dimensions and the surface of the body

in three dimensions. The yaw torque is measured by the non-dimensional coefficient

CM = Mz/(0.5ρU2
0 LS).

7.4. SIMULATION OF ANGUILLIFORM SWIMMING 141

7.4.2 Equations of the Anguilliform Swimmer

The position xc and the angle ϕc of anguilliform swimmer evolve by the following set of

equations based on Eqs. (7.16) and (7.17)

dxc

dt
= uc,

duc

dt
=

F

m
,

dϕc

dt
= ωc, (7.18)

dωc

dt
=

Mz − İzωc

Iz

,

where uc denotes the velocity of the swimmer and ωc the angular velocity. We solve this

set of equations simultaneously with the particle equations (Eq. 7.7-7.12) that describe

the fluid behavior.

7.4.3 Computational Setup

The particles are initially distributed uniformly in the domain and remeshed every time

step. We integrate the Eqns.(7.7)-(7.12), and (7.18) with respect to time using a explicit

4th order Runge-Kutta scheme with time step of ∆t = 0.001. We consider the domain as

an noninertial coordinate system that moves with the opposite x1-component of the fish

velocity such that x1-position of the fish is constant in the noninertial coordinate system

(cf. Appendix C). Thus, we accelerate the fluid in x1-direction by the opposite force that

acts on the swimmer and the swimmer remains on its x1-position. We impose an inlet and

an outlet condition to the boundary ahead and rear of the swimming body, respectively.

This approach enables us to reduce the computational effort significantly because our

particle solver is currently limited to a uniform resolution. The size of the domain is 4×2

in two dimensions and 3 × 2 × 2 in three dimensions. This domain size is tested to be

sufficiently large to neglect the influence of the boundary.

The simulations are based on 1.3 ·105 particles in two dimensions, and 2.5 ·107 particles

in three dimensions.

142 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

t

U
,
V

Figure 7.8: Longitudinal (solid line) and lateral velocity (dashed line) of the two dimensional

swimmer compared to finite volume solution (light blue) [92]

7.4.4 Results

Two-Dimensional Anguilliform Swimmer

We present a comparison in the two dimensional case with the work of Kern et al. [92]

in terms of velocity of the swimmer, as well as forces and torque acting on the swimmer.

The swimmer accelerates from rest to an asymptotic mean forward velocity of Ū‖ = 0.54

in about seven undulation cycles. The velocity varies slightly during a cycle while the

lateral velocity U⊥ has an amplitude of 0.04. The time history of the longitudinal and

lateral velocity agrees very well with the incompressible solution (Fig. 7.8). The velocity

differs the most at time 1 < t < 4 where the density variations are larger than at later time

steps. The higher density variations lead to higher pressure variations resulting in larger

forces acting on the swimmer. The incompressible solution is approximated sufficiently

with a Mach number of M = 0.1.

The longitudinal and lateral forces and the torque (Fig. 7.9) agree very well with the

incompressible solution. The force and moment coefficient C‖, C⊥ and CM converge

7.4. SIMULATION OF ANGUILLIFORM SWIMMING 143

to oscillation modes with zero mean and a constant amplitude of 0.03, 0.04 and 0.03,

respectively.

Kern et al. [92] applied a low pass filter to the fluid force F and the torque Mz to stabilize

the simulation of the incompressible flow. We can omit the use of a low pass filter in our

study. The compressibility of the fluid causes unresolved pressure waves resulting in

high frequent noise in the flow structure. A second order filter [125] is applied to the

mass and the momentum during the remeshing process every 100 steps to suppress the

small scale pressure waves in the range of the Nyquist frequency. A drawback of the

simulation, however, is the remaining noise in the pressure field resulting in noisy forces

acting on the swimmer that remains even when applying the low pass filter presented by

Kern et al. [92].

Fig. 7.10 and 7.11 show the vorticity field of the swimmer during one period at the final

swimming speed. The main differences in the vorticity field result from the fact that the

particle solution is uniformly resolved, whereas the finite volume solution involves an

adaptive re-gridding. Thus, the vorticity shedding at the boundary layer is better resolved

in the finite volume solution, the wake pattern behind the tail in the particle solution.

The tail beat amplitude is A = 0.16 and the corresponding Strouhal number is St =

0.59. The wave velocity is V = 0.73, which results in a slip of Ū‖/V = 0.74.

Three-Dimensional Anguilliform Swimmer

In three dimensions the forces acting on the fish compare well with the finite volume

solution (Fig. 7.13). The net force and moment coefficient C‖, C⊥ and CM oscillate with

a mean of zero and amplitudes of 0.04, 0.06 and 0.03, respectively. The final swimming

speed in the particle solution (upIBM = 0.448) is 12% higher than the result in the finite

volume solution (uFV = 0.402). This result matches well with the drag comparison in the

flow past a sphere at Re = 300 where the drag coefficient differs approximately 10% from

the results of grid based methods (Table 7.2). The forward velocity U‖ oscillates with an

amplitude of 0.01. The lateral velocity U⊥ has a zero mean and an amplitude of 0.03.

The wave velocity V = 0.73 is equal to the two dimensional case resulting in the slip of

144 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

0 2 4 6 8

−0.1

−0.05

0

0.05

t

C
||

0 2 4 6 8

−0.2

0

0.2

t

C
⊥

0 2 4 6 8
−0.05

0

0.05

t

C
M

Figure 7.9: Longitudinal force C‖, lateral force C⊥ and torque CM of the two dimensional swim-

mer (black) compared to finite volume solution (light blue) [92]

7.4. SIMULATION OF ANGUILLIFORM SWIMMING 145

Figure 7.10: Vorticity field of the two-dimensional swimmer using pIBM (left) and the reference

solution [92] (right) for one swmming cycle at time t, t+0.25T, t+0.5T, t+0.75T

146 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

Figure 7.11: Zoom of the vorticity field at the tail of the two-dimensional swimmer using pIBM

(left) and the reference solution [92] (right) for one swmming cycle at time t, t+0.25T, t+0.5T,

t+0.75T

7.4. SIMULATION OF ANGUILLIFORM SWIMMING 147

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

t

U
,
V

Figure 7.12: Longitudinal (solid line) and lateral velocity (dashed line) of the three dimensional

swimmer compared to finite volume solution (light blue) [92]

Ū‖/V = 0.61. The tail beat amplitude is determined to be A = 0.15 with St = 0.67.

The oscillating tail of the swimmer creates a three-dimensional vortex shedding in the

frequency of the swimming motion (Fig. 7.14-7.16). Both, the particle and the finite

volume solution show the vorticity shed in every half tail beat cycle that breaks up into

two vortices forming lateral jets. The vorticity field of particle solution appears smoother

and shows less small-scale structures. The vortex rings are less recognizable. As the

finite-volume grid feature a four times higher resolution in the boundary layer of the

tail than the particle solution, the absence of the small-scale structures in the boundary

layer can be associated with a lack of resolution. The small vorticity structures between

the shedding vortex pair result are mainly spurious and result from the highly dynamic

refinement of the finite volume grid.

Overall, the agreement between the particle and the finite volume solutions is good and

shows that the pIBM is appropriate to solve flow-structure interactions accurately.

148 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

0 2 4 6 8

−0.1

−0.05

0

0.05

t

C
||

0 2 4 6 8

−0.2

0

0.2

t

C
⊥

0 2 4 6 8
−0.05

0

0.05

t

C
M

Figure 7.13: Longitudinal force C‖, lateral force C⊥ and torque CM of the three dimensional

swimmer (black) compared to finite volume solution (light blue) [92]

7.4. SIMULATION OF ANGUILLIFORM SWIMMING 149

Figure 7.14: Vorticity field of the three-dimensional swimmer using pIBM (left) and the reference

solution [92] (right) for one swmming cycle at time t, t+0.25T, t+0.5T, t+0.75T

150 CHAPTER 7. PARTICLE IMMERSED BOUNDARY METHOD

Figure 7.15: Zoom of the vorticity field at the tail of the three-dimensional swimmer using pIBM

(left) and the reference solution [92] (right) for one swmming cycle at time t, t+0.25T, t+0.5T,

t+0.75T

7.4. SIMULATION OF ANGUILLIFORM SWIMMING 151

Figure 7.16: Isosurface of the vorticity magnitude (left) and vortices visualized by the λ2-method

(right) of the three-dimensional swimmer using pIBM for one swmming cycle at time t, t+0.25T,

t+0.5T, t+0.75T

Chapter 8

Fluid-Solid Interactions

8.1 Introduction

In many biological systems, fluid-solid interactions are of special interest. Their numeri-

cal simulation is essential, particularly, in virtual surgery because approximately 80% of

the human body consists of water and and most vital organs are filled with fluid. How-

ever, the coupling of the fluid-solid models causes several numerical problems. Often,

the governing equations of the fluid-solid system are solved by different numerical meth-

ods making the coupling technically difficult because of the conservation requirement of

certain quantities. Thus, fluids are commonly simulated using finite volume or particle

methods whereas elastic solids are usually analyzed by using finite element methods. An

additional problem is the moving interface between the fluid and solid domain, which

typically requires complex mesh movements and adaption. A classical way to solve fluid-

structure interactions are Arbitrary Lagrange Euler (ALE) methods where the solid is

treated in a reference frame formulation and the fluid is solved in a Lagrangian way.

However, this approach can be problematic when the deformations are large due to the

excessive mesh distortion [154, 33]. Methods based on the concept of immersed bound-

aries offer promising alternatives to ALE methods because they do not require complex

grids to resolve the fluid-solid interface. Thus, boundary conditions are translated into

forcing terms in the governing equations. Following the idea of immersed boundaries,

Cottet [39] has developed a one-dimensional particle model based on a unified conserva-

tion equation for the solid-fluid problem. A key aspect of this approach is the implicit

154 CHAPTER 8. FLUID-SOLID INTERACTIONS

treatment of the interface which avoids an explicit tracking of the interface. In this chap-

ter, we consider a Smoothed Particle Hydrodynamic (SPH) solution of the particle model

presented in [107]. The implementation uses a remeshing scheme (rSPH) to ensure the

convergence of the method [29]. The unified formulation contains anisotropic diffusion

terms at the interface which we solve numerically using the method of particle strength

exchange (PSE) [192] or using isotropic one-sided differentiation. We expand the model

to cover the compressible Navier-Stokes in one- and two dimensions. The model expan-

sion requires the consideration of the continuity equation and the pressure gradient in the

momentum equation.

8.2 Particle Model of Cottet

The model of Cottet [39] describes the fluid by the Burger’s equation and the solid by a

one-dimensional wave equation. The Burger’s equation is a one-dimensional approxima-

tion of the Navier Stokes equations which neglects pressure gradients. The fluid velocity

u and the solid displacement d are governed by

Burger’s equation (fluid)

∂u

∂t
+

3

2
u
∂u

∂x
− µρ

∂2u

∂x2
= 0 for x ∈ [−0.5, γ(t)] (8.1)

One-dimensional wave equation (solid)

∂2d

∂t2
− E

∂2d

∂ξ2
= 0 for ξ ∈ [0, 0.5] (8.2)

Interface condition: equilibrium of stress at γ(t) = d(0, t)

µ
∂u(γ(t), t)

∂x
= E

∂d(0, t)

∂ξ
(8.3)

where µ denotes the fluid viscosity and E represents the elasticity coefficient. ξ is the

Lagrangian variable for the solid which is related to the Eulerian coordinate by x(ξ, t) =

ξ + d(ξ, t).

A unified formulation of the system of equations (Eq. (8.1 - 8.3)) was derived by Cottet

[39]. As a result, both materials, the fluid and the solid, are described by one single

8.3. SPH SOLUTION OF COTTET MODEL 155

conservation equation which is define for all x ∈ [−0.5, 0.5] and ξ ∈ [0, 0.5]:

∂u

∂t
+ u

∂u

∂x
= − 1

2
χF u

∂u

∂x

+

(

χF +
∂x

∂ξ
χs

)
∂

∂x

(

µ
∂u

∂x
χF + E

∂d

∂ξ
χS

)

.
(8.4)

The characteristic functions χF and χS are Heaviside functions which are nonzero in the

fluid and solid domain, respectively. The Jacobian of the flow map, ∂x
∂ξ

, links derivatives

with respect to the Lagrangian and the Eulerian coordinates.

The considered test case involves the following initial displacement and velocity fields:

d(ξ, 0) = 0 for ξ ∈ [0, 0.5]

u(x, 0) =
∂d(ξ, 0)

∂t
= −0.1(cos (2πx) + 1) for x ∈ [−0.5, 0.5]

(8.5)

The imposed boundary conditions require the materials to be at rest at the outer limits

of the computational domain and are expressed by

u(−0.5, t) = d(0.5, t) =
∂d(0.5, t)

∂t
= 0 for t ≥ 0. (8.6)

8.3 SPH solution of Cottet Model

8.3.1 Particle discretization of governing equations

According to Eq.(8.4) the particle position xp, volume vp and velocity up evolve by the

following system of ordinary differential equations

dxp

dt
= up,

dvp

dt
=

〈
∂u

∂x

〉

p

vp,

dup

dt
= −1

2

〈
∂u

∂x

〉

p

upχ
F (8.7)

+

(

χF +

〈
∂x

∂ξ

〉

p

χs

)(〈
∂

∂x
µχF ∂u

∂x

〉

p

+

〈
∂ξ

∂x

〉

p

〈
∂

∂ξ
EχS ∂d

∂ξ

〉

p

)

,

where 〈�〉p denotes the derivative approximation on a particle p (cf. Eq.(2.20)).

156 CHAPTER 8. FLUID-SOLID INTERACTIONS

The Jacobian of the flow mapping is approximated by
〈

∂x
∂ξ

〉

p
= vp

h
. We solve the

anisotropic diffusion terms in Eq.(8.7) using the method of particle strength exchange

(PSE) for anisotropic diffusion [192, 50]. Note, that the diffusion tensor in multiple di-

mension is reduced to a simple average in one dimension. Therefore,
〈

∂

∂x
µχF ∂u

∂x

〉

p

=
∑

j

(uj − up)
1

2
(µpχ

F
p + µjχ

F
j)vj

∂2

∂x2
W (xp − xj, h)

=
1

2
µ
∑

j

(uj − up) (χF
p + χF

j)vj
∂2

∂x2
W (xp − xj , h) (8.8)

〈
∂

∂ξ
EχS ∂d

∂ξ

〉

p

=
∑

j

(dj − dp)
1

2
(Epχ

S
p + Ejχ

S
j)vj

∂2

∂ξ2
W (ξp − ξj , h)

=
1

2
E
∑

j

(dj − dp) (χS
p + χS

j)vj
∂2

∂ξ2
W (ξp − ξj , h) (8.9)

Using this approach, we do not apply the one-sided remeshing technique. Each particle

is redistributed by the full space kernel M’4. A critical point of this approach is the fact

that the displacement needs to be known of fluid particles located in the support of a solid

particle for evaluating the anisotropic diffusion term according to Eq. (8.9). This requires

the extrapolation of the solid displacement over the interface. As a first approach, we

assign the displacement of the nearest solid particle to the interface fluid particle.

A different approach to solve Eq. (8.4) results from the idea to use first derivatives only.

Therefore, the evolution of the particle velocity u is expressed by

dup

dt
= −1

2

〈
∂u

∂x

〉

p

upχ
F (8.10)

+

(

χF +

〈
∂x

∂ξ

〉

p

χs

)〈

∂

∂x

(

µ

〈
∂u

∂x

〉

p

χF + E

〈
∂d

∂ξ

〉

p

χS

)〉

p

,

where
〈

∂u
∂x

〉

p
χF and

〈
∂d
∂ξ

〉

p
χS are one-sided derivatives within the corresponding domain.

The evaluation of the one-sided derivatives involves the normalization of the derivative of

the SPH Kernel as described in [130]. Using one-sided formula we need to impose an

additional interface condition. This condition requires the continuity of velocity at the in-

terface, thus u(γ(t), t) = ∂d(γ(t),t)
∂t

. The interface velocity is approximated by the average

velocity of the two particles surrounding the interface and assigned to these particles.

8.3. SPH SOLUTION OF COTTET MODEL 157

8.3.2 Boundary Conditions

In both approaches, the no-slip boundary condition at x = −0.5 is solved using ghost

particles with an extrapolated velocity [162]. The solid particle at x = 0.5 is fixed to its

initial position.

8.3.3 Numerical Results

The system parameters of the simulations are µ = 0.001 for the viscosity and E = 1 for

the elasticity. For time integration of the equations (8.7) and (8.11) we use a fourth order

Runge-Kutta scheme with a timestep of 0.005. We compare the results against an ALE-

method simulation based on centered finite-differences and a hybrid finite-difference par-

ticle method (PSE) solution of Cottet presented in [39]. The L2-error of the velocity

field is evaluated based on a well converged solution of 400 particles using rSPH with

anisotropic diffusion. As a reference velocity we use the mean velocity of the initial

condition (ū = −0.1).

rSPH with anisotropic diffusion

Fig. 8.1 compares the results of the rSPH approach using anisotropic diffusion (Eq. 8.7)

with the ALE results. In both simulations, the domain is discretized by 100 computa-

tional elements. At early time (t ≤ 1), the results are very similar. However, at t = 2.0,

the ALE solution reveals a stability problem, in regions where the velocity gradients of

the fluid are high, whereas the rSPH solution is observed to remain stable. Compared to

a high resolution simulation, the rSPH method is more accurate than the ALE solution

with L2-errors of 0.04 and 0.14, respectively. The rSPH results with two different reso-

lutions match very well with the particle solution of Cottet (Fig. 8.2). The hybrid finite

difference-particle method has an L2-error of 0.03. The lower error is mainly due to a

different treatment of the interface. In the particle method of Cottet, the fluid particle

at the interface is not redistributed, and its displacement is defined as its distance to its

initial position. To compensate the resulting non-equidistant spacing of the particles at

158 CHAPTER 8. FLUID-SOLID INTERACTIONS

Figure 8.1: Velocity profiles at t = 0.0, 0.5, 1.0 and 2.0 of the rSPH with anisotropic diffusion

(fluid (- -), solid (–))and the ALE solution (· −) (left to right, top to bottom)

the interface, an asymmetric kernel is used which improves the accuracy of the method.

We, however, do not apply a different kernel at the interface but remesh the interface fluid

particle. We assign the interface displacement to the fluid particle which is approximated

by the displacement of the solid particle closest to the interface.

rSPH with one-sided differentiation

The results of the rSPH with one-sided differentiation are compared to the ALE solution

in Fig. 8.3. Again, the domain is divided into 100 computational elements. This particle

approach is also more robust that the ALE method. The velocity profile is more accu-

rate than the one of the ALE method but less accurate that the particle solution of Cottet

(Fig. 8.4) with L2-errors of 0.10, 0.14, and 0.03, respectively. Regarding the computa-

8.3. SPH SOLUTION OF COTTET MODEL 159

Figure 8.2: Velocity profiles at t = 2.0 of the rSPH with anisotropic diffusion (100 particle (- -),

200 particles (–)) and the particle solution (· -) of Cottet [39].

tional cost this approach is more expensive than rSPH with anisotropic diffusion because

more differential operations need to be approximated. Moreover, the treatment of the

interface is complicated by the one-sided differentiation, but does not require the extrap-

olation of the solid displacement to the fluid particle in the vicinity of the interface.

Convergence

Fig. 8.5 shows the convergence of both rSPH approaches measured by the L2-error. It

demonstrates that the rSPH method with one-sided differentiation has basically a linear

convergence rate because of the second-order full-space and the first-order one-sided spa-

tial differentiation. The plot indicates that the rSPH approach with anisotropic diffusion

converges linearly. The small irregularities in the convergence is due to the approximation

of the fluid displacement at the interface.

160 CHAPTER 8. FLUID-SOLID INTERACTIONS

Figure 8.3: Velocity profiles at t = 0.0, 0.5, 1.0 and 2.0 of the rSPH with one-sided differentiation

(fluid (- -), solid (–))and the ALE solution (· −)(left to right, top to bottom)

8.4 Model Extension for Compressible Fluid in 1D

8.4.1 Governing Equations

The expansion of the Burger’s equation to a compressible Navier-Stokes equation in-

volves the variability of the fluid density ρ and the consideration of pressure term in the

momentum equation (Eq.(8.1)) leading to a one-dimensional Navier-Stokes equation.

∂u

∂t
+ u

∂u

∂x
= −1

ρ

(
∂p

∂x
+

4

3
ν
∂2u

∂x2

)

for x ∈ [−0.5, γ(t)], (8.11)

where p is the pressure. The factor 4
3

is based on the Stokes’ Postulate for compressible

fluid [180].

8.4. MODEL EXTENSION FOR COMPRESSIBLE FLUID IN 1D 161

Figure 8.4: Velocity profiles at t = 2.0 of the rSPH with one-sided differentiation (100 particle (-

-), 200 particles (–))and the particle solution (· -) of Cottet [39]

50 100 200
10

−3

10
−2

10
−1

10
0

Number of elements N

L
2
−

e
rr

o
r

Figure 8.5: Error plot of the rSPH solutions (anisotropic diffusion (�-) and one-sided differenti-

ation (◦-)) at t = 2.0 compared to hybrid finite-difference particle (?) and ALE (+) solution of

Cottet [39] (first order - - , second order · -)

162 CHAPTER 8. FLUID-SOLID INTERACTIONS

The set of governing equations is closed by the equation of state for an ideal gas

p = ρRT (8.12)

where R is the specific gas constant and T the temperature. We assume the temperature

T = T0 to be constant in space and time.

The solid displacement remains to evolve according to the one-dimensional wave equa-

tion (Eq.(8.2)). The equilibrium of stress equation at the interface contains an additional

term, that takes the fluid pressure into account.

−p(ρ(γ(t), t)) + µ
∂u(γ(t), t)

∂x
= E

∂d(0, t)

∂ξ
(8.13)

Thus, the solid needs initially to be pre-stressed (Fig. 8.6) for a non-zero pressure and

∂u
∂x

= 0.

We obtain a uniform formulation describing both, fluid and solid, by following the ap-

proach of Cottet [39]

∂u

∂t
+ u

∂u

∂x
=

1

ρ

∂

∂x

[(
4

3
µ

∂u

∂x
− p

)

χF + E
∂d

∂ξ
χS

]

(8.14)

The boundary conditions remain as decribed in Eq.(8.6). The initial displacement of

the interface is obtained by solving the ODE E ∂d(ξ)
∂ξ

= −p with the boundary condition

d(0.5, 0) = 0. Thus, the initial conditions differ from Eq.(8.5) and are expressed by

d(ξ, 0) = − p

E
ξ +

1

2

p

E
for ξ ∈ [0, 0.5]

u(x, 0) =
∂d(ξ, 0)

∂t
= −0.1(cos (2πx) + 1) for x ∈ [−0.5, 0.5]. (8.15)

8.4.2 Particle discretization of governing equations

Particle position xp density ρp and velocity up evolve by the following ordinary differen-

tial equations derived from equation (8.14)

dxp

dt
= up (8.16)

dρp

dt
= −ρp

〈
∂u

∂x

〉

p

(8.17)

dup

dt
= F (xp, xq; ξp, ξq; up, uq), (8.18)

8.4. MODEL EXTENSION FOR COMPRESSIBLE FLUID IN 1D 163

Figure 8.6: Pre-stressed solid to obtain equilibrium of stress at the interface

where 〈�〉p denotes the derivative approximation on a particle p (cf. Eq. (2.20)). The

function F includes the discretized right hand side of the momentum equation (Eq.8.14)

that can be solved using one-sided differentiation

F =
1

ρp

〈

∂

∂x

[(

4

3
µ

〈
∂u

∂x

〉

p

− p

)

χF + E

〈
∂d

∂ξ

〉

p

χS

]〉

p

(8.19)

where
〈

∂u
∂x

〉

p
χF and

〈
∂d
∂ξ

〉

p
χS are one-sided derivatives at the interface. Using one-sided

derivatives the interface condition u(γ(t), t) = ∂d(γ(t),t)
∂t

is mandatory to guarantee sta-

bility. The interface velocity and force are approximated by the averaging over the two

particles adjacent to the interface and assigned to these particles. The advantage of the

rSPH with one-sided differentiation is the ease of handling the interface.

Alternatively, we can use the approach of rSPH with anisotropic diffusion involving

second derivatives

F =
1

ρp

(

χF +

〈
∂x

∂ξ

〉

p

χS

)

[(〈
∂

∂x
χF 4

3
µ

∂u

∂x

〉

p

−
〈

∂

∂x
χFp

〉

p

)

+

〈
∂ξ

∂x

〉

p

〈
∂

∂ξ
EχS ∂d

∂ξ

〉

p

]

.

(8.20)

The boundary conditions are identical with the test case described in Section 8.3.2.

164 CHAPTER 8. FLUID-SOLID INTERACTIONS

8.4.3 Results

We show the numerical results of the test problem using one-sided differentiation. Re-

garding the anisotropic approach, the extrapolation of the displacement over the interface

is crucial element that needs more investigation.

The viscosity in the simulation is set to µ = 0.01 while the Young’s modulus is defined

to be E = 1. A set of 300 particles are initialized to describe the fluid-solid domain. A

fourth order Runge-Kutta scheme with a time-step of 0.00033 is used for time integration

of Eq.(8.18). The fluid particles are remeshed after every time-integration step.

Fig. 8.7-8.10 show snapshots of the test case simulation considering an initial velocity

of u = −0.1(cos (2πx) + 1). Initially, the material moves towards the left boundary.

Therefore, the density increases at the left wall and the fluid is finally repelled due to the

resulting pressure at the wall. On the right side of the domain, the solid is first stretched

and later compressed again as it overshoots its equilibrium. These physical phenomena

leads to pressure waves traveling through the domain that are reflected by the walls. The

strength of the waves is damped by the fluid viscosity causing energy to dissipate.

8.5 Model Extension for a Compressible Fluid in 2D

The extension to two dimension requires the consideration of shear stresses. We vali-

date our results by comparing with the one-dimensional results, and test the shear stress

behavior of a channel flow.

8.5.1 Fluid Governing Equations

The Navier Stokes equation for a compressible fluid [180] is expressed by

ρ
du

dt
= −∇p + ∇(2µS − 2

3
µ∇uI), (8.21)

where the strain-rate tensor in two dimensions is defined by

∇S =
[

∂
∂x

∂
∂y

]





∂u
∂x

1
2

(
∂v
∂x

+ ∂u
∂y

)

1
2

(
∂u
∂y

+ ∂v
∂x

)
∂v
∂y



 . (8.22)

8.5. MODEL EXTENSION FOR A COMPRESSIBLE FLUID IN 2D 165

Figure 8.7: Fluid-solid interactions in 1D. Profile of velocity, stress, body force, displacement,

volume and density at t = 0. Fluid on the left, solid on the right.

Figure 8.8: Fluid-solid interactions in 1D. Profile of velocity, stress, body force, displacement,

volume and density at t = 0.5. Fluid on the left, solid on the right.

166 CHAPTER 8. FLUID-SOLID INTERACTIONS

Figure 8.9: Fluid-solid interactions in 1D. Profile of velocity, stress, body force, displacement,

volume and density at t = 1. Fluid on the left, solid on the right.

Figure 8.10: Fluid-solid interactions in 1D. Profile of velocity, stress, body force, displacement,

volume and density at t = 2. Fluid on the left, solid on the right.

8.5. MODEL EXTENSION FOR A COMPRESSIBLE FLUID IN 2D 167

8.5.2 Solid Governing Equations

The solid is described by a linear elastic model in plane stress governed by the equations

of continuum mechanics. The continuum equilibrium condition in two dimensions is

defined by

ρ
Du

Dt
=

∂σxx

∂x
+

∂τxy

∂y
+ f1 (8.23)

ρ
Dv

Dt
=

∂τyx

∂x
+

∂σyy

∂y
+ f2 (8.24)

where σij , τij represent the components of the material stress tensor and f1, f2 external

forces. The constitutive model describes the stress-strain relationship and is expressed in

the case of linear elasticity by

σij = 2µsεij + λδijεkk (8.25)

µS =
E

2(1 + ν)
(8.26)

λ =
νE

(1 − 2ν)(1 + ν)

where µs is the shear modulus, E is the Young’s modulus, and ν is the Poisson ration.

The governing equations are closed by the kinematic relationships

εξξ =
∂dξ

∂ξ

εηη =
∂dη

∂η
(8.27)

εξη =
1

2
(
∂dξ

∂η
+

∂dη

∂ξ
)

where ξ and η are the components of the Eulerian variable.

8.5.3 Interface Equilibrium Condition

The fluid stress is expressed based on Eq.(8.21) in the Lagrangian variables (x, y) by

σxx = −p + 2µ
∂u

∂x
− 2

3
µ∇u = −p +

2

3
µ

(

2
∂u

∂x
− ∂v

∂y

)

(8.28)

σyy = −p +
2

3
µ

(

2
∂v

∂y
− ∂u

∂x

)

(8.29)

τxy = µ

(
∂u

∂y
+

∂v

∂x

)

, (8.30)

168 CHAPTER 8. FLUID-SOLID INTERACTIONS

whereas the solid stress can be defined based on Eqs.(8.25)-(8.27) in Eulerian variables

(ξ, η) by

σξξ = 2µS
∂dξ

∂ξ
+ λ

(
∂dξ

∂ξ
+

∂dη

∂η

)

(8.31)

σηη = 2µS
∂dη

∂ξ
+ λ

(
∂dξ

∂ξ
+

∂dη

∂η

)

(8.32)

τξη = µS

(
∂dξ

∂η
+

∂dη

∂ξ

)

(8.33)

Figure 8.11: Interface stress components regarding a horizontal cut

Applying a horizontal cut at the interface (cf. Fig. 8.11) we obtain the following stress

balance

−p +
2

3
µ

(

2
∂v

∂y
− ∂u

∂x

)

︸ ︷︷ ︸

σyy

= 2µS
∂dη

∂ξ
+ λ

(
∂dξ

∂ξ
+

∂dη

∂η

)

︸ ︷︷ ︸

σηη

(8.34)

µ

(
∂u

∂y
+

∂v

∂x

)

︸ ︷︷ ︸

τxy

= µS

(
∂dξ

∂η
+

∂dη

∂ξ

)

︸ ︷︷ ︸

τξη

(8.35)

8.5. MODEL EXTENSION FOR A COMPRESSIBLE FLUID IN 2D 169

Figure 8.12: Interface stress components regarding a vertical cut

Cutting the interface vertically (cf. Fig. 8.12), leads to the following stress balance

−p +
2

3
µ

(

2
∂u

∂x
− ∂v

∂y

)

︸ ︷︷ ︸

σxx

= 2µS
∂dξ

∂ξ
+ λ

(
∂dξ

∂ξ
+

∂dη

∂η

)

+ const(y)

︸ ︷︷ ︸

σξξ

(8.36)

µ

(
∂u

∂y
+

∂v

∂x

)

︸ ︷︷ ︸

τyx

= µS

(
∂dξ

∂η
+

∂dη

∂ξ

)

︸ ︷︷ ︸

τηξ

(8.37)

The symmetry of the shear stress tensor τ requires τxy = τyx, τξη = τηξ . Together with

the stress balance, this leads to a continuity in the stress distribution of the form

σxxχ
F + σξξχ

S smooth for x ∈ [−0.5, 0.5]

σyyχ
F + σηηχ

S smooth for y ∈ [−0.5, 0.5]

τxyχ
F + τξηχ

S smooth for x and y ∈ [−0.5, 0.5]

(8.38)

Thus, we can apply Eqs.(8.23) and (8.24) over the fluid-solid interface resulting in

ρ
Du

Dt
=

∂

∂x

[
σxxχ

F + σξξχ
S
]
+

∂

∂y

[
τyxχ

F + τηξχ
S
]

(8.39)

ρ
Dv

Dt
=

∂

∂y

[
σyyχ

F + σηηχ
S
]
+

∂

∂x

[
τxyχ

F + τξηχ
S
]

(8.40)

170 CHAPTER 8. FLUID-SOLID INTERACTIONS

8.5.4 Particle Equations

For simplification, we set the poisson ratio to zero (ν = 0). The ODEs governing the

evolution of particle attributes are based on Eqs. (8.39) and (8.40). Particle position xp

density ρp and velocity up evolve according to

dxp

dt
= up, xp =




xp

yp



 (8.41)

dρp

dt
= −ρ∇up, up =




up

vp



 (8.42)

The evolution of the velocity x-component up is expressed by

ρp
dup

dt
=

〈
∂

∂x

[
σxxχ

F + σξξχ
S
]
〉

p

+

〈
∂

∂y

[
τyxχ

F + τηξχ
S
]
〉

p

(8.43)

where

σxx = −p +
2

3
µ

(

2

〈
∂u

∂x

〉

p

−
〈

∂v

∂y

〉

p

)

(8.44)

σξξ = E

〈
∂dξ

∂ξ

〉

p

(8.45)

τyx = µ

(〈
∂u

∂y

〉

p

+

〈
∂v

∂x

〉

p

)

(8.46)

τηξ =
E

2

(〈
∂dξ

∂η

〉

p

+

〈
∂dη

∂ξ

〉

p

)

(8.47)

In y-direction, we obtain for the y-component vp

ρp
dvp

dt
=

〈
∂

∂y

[
σyyχ

F + σηηχ
S
]
〉

p

+

〈
∂

∂x

[
τxyχ

F + τξηχ
S
]
〉

p

(8.48)

where

σyy = −p +
2

3
µ

(

2

〈
∂v

∂y

〉

p

−
〈

∂u

∂x

〉

p

)

(8.49)

σηη = E

〈
∂dη

∂η

〉

p

(8.50)

τxy = µ

(〈
∂u

∂y

〉

p

+

〈
∂v

∂x

〉

p

)

(8.51)

τξη =
E

2

(〈
∂dξ

∂η

〉

p

+

〈
∂dη

∂ξ

〉

p

)

(8.52)

8.5. MODEL EXTENSION FOR A COMPRESSIBLE FLUID IN 2D 171

8.5.5 Results

In two dimensions, we investigate two test cases, the first one being normal stress the

second one shear stress driven. Both test cases have the same setup shown in Fig. 8.13.

The shear and normal stresses in a fluid are related to the time-rate-of-change of the

deformation of the fluid element. As a result, both shear and normal stresses depend on

velocity gradients in the flow. In most viscous flows, normal stresses are much smaller

than shear stresses, and they are often neglected. Normal stresses become important when

the normal velocity gradients (∂u
∂x

and ∂v
∂y

) are very large, such inside a shock wave.

Figure 8.13: Setup of the two-dimensional test cases

Test Case for Normal Stresses

The first case is an extension of the one dimensional case (normal stress driven). The solid

material resides initially in the positive y-domain and a fluid in the negative y-domain.

While x-component of the initial velocity is set to zero u(x, 0) = 0 ,the y-component

v(x, 0) = −0.1(cos 2πy + 1) is equivalent to the velocity profile in one-dimensional test

172 CHAPTER 8. FLUID-SOLID INTERACTIONS

case to compare the two cases. Similar to the one-dimensional case an analytical solution

is not available.

We impose a no-slip condition at the boundary y = −0.5.Again, this boundary con-

dition is obtained by using ghost particles with an extrapolated velocity. At the solid

boundary y = 0.5 ghost particles are assign with an extrapolated displacement, to get a

zero displacement at the solid-wall boundary.

The interface velocity and force are again approximated by the average of the interface

adjacent particles and assigned to these.

The system parameters of the simulation are µ = 0.01 for the viscosity of the fluid, the

E-module is set to one as in the one-dimensional simulation. For time-integration a fourth

order Runge-Kutta scheme with a timestep of 0.005 was used.

Since this test case is the extended version of the one-dimensional test case, the velocity

profile are supposed to match at all times. Fig. 8.14 shows the final velocity profiles at

t = 2 for both one and two dimensions. Even though the one dimensional simulation has

a much higher resolution with 300 particles used and a time-step 15 times smaller than the

two dimensional simulation, the agreement is good in the final velocity profile. Fig. 8.15

shows the velocity profile of the entire domain.

We observe that simulation results are sensitive to the remeshing procedure. The

remeshing scheme can generate particles very close to the boundary that can cause nu-

merical problems, because the particle velocity is extrapolated to the ghost particles over

the boundary to maintain the no slip condition.

8.5.6 Test Case for Shear Stresses

The second test case involves the consideration of a channel flow, as shown in Fig. 8.16.

The fluid will perform a classical motion described as channel flow, the plane Poiseuille

flow. The Poiseuille flow is a two-dimensional flow between parallel plates, with a con-

stant pressure gradient or in this case a body force fx. At the interface the passing fluid

will exert shear stress on the solid resulting in a deformation of the solid. The extent of

8.5. MODEL EXTENSION FOR A COMPRESSIBLE FLUID IN 2D 173

Figure 8.14: Comparison of final velocity profile in one and two-dimensions

Figure 8.15: Final velocity trofile at t = 2 plotted over the x-y-domain

174 CHAPTER 8. FLUID-SOLID INTERACTIONS

the deformation depends on the shear modulus µs of the solid.

Figure 8.16: Setup of the second test case involving a channel flow

We consider, again, a no-slip condition at the fluid-wall interface (y = −0.5), and im-

pose a zero-displacement condition at solid-wall interface (y = 0.5) using ghost particles.

The viscosity of the fluid is µ = 0.01 and the E-module varies for each simulation. For

time-integration a fourth order Runge-Kutta scheme with a timestep of 0.005 is used.

This simulation does not require remeshing because the particles overlap well during the

simulation time. Fig. 8.17 shows the final positions of the particles after one time-period

for different coefficients of elasticity (E-module). The behavior of the solid applied to

shear stresses is dominated by the choice of the E-module because the shear module

in these simulations is defined by µs = E
2

(cf. Eq. 8.26) because we set the Poisson-

ratio ν to zero. With increasing the value of the Young’s modulus E the solid behaves

stiffer, therefore, deformations are smaller as shown in Fig. 8.17. The displacement at

the interface is shown for various Young’s moduli in Fig. 8.18. The relation between

the Young’s modulus and the displacement resembles a hyperbola, which is excepted

because doubling the Young’s module is expected to halve the displacement. Plotting the

relationship between Young’s module and displacement double logarithmically, the data

points reside close to a straight line as expected.

We know from solving the Navier-Stokes equation for a channel flow analytically that

the velocity profile has the form of a parabolic function. The steady state behavior of the

8.5. MODEL EXTENSION FOR A COMPRESSIBLE FLUID IN 2D 175

Figure 8.17: Particle positions at t = 2 for different Young’s moduli E (not remeshed)

Figure 8.18: Effect of the Young’s modulus E on the displacement of the interface

176 CHAPTER 8. FLUID-SOLID INTERACTIONS

fluid is described by

µ
∂2u

∂y2
+ ρg = 0 (8.53)

where g is gravitational force acting in x-direction. Integrating Eq.(8.53) twice leads to

u(y) = −ρ

µ
g
y2

2
+ Ay + B (8.54)

The integration constants (A, B) can be derived using the two no-slip conditions u(y =

0) = 0 and u(y = −0.5) = 0. Thus, the analytical velocity profile is expressed by

u(y) = −ρ

µ
g
y2

2
− 1

4

ρ

µ
gy (8.55)

The maximum velocity is found at the position y = −0.25. Considering ρ = 1, µ = 0.01

and g = 0.03 the maximum velocity in the channel flow becomes umax = 0.09375. The

velocity in the corresponding fluid simulation is u(y = −.25) = 0.0953 at t = 15. The

simulation shows a discrepancy of less than 2% from the analytical solution. The final

velocity profile is shown in Fig. 8.19.

Figure 8.19: Velocity profile for channel flow at steady state

We can estimate the displacement of the interface at the steady state conditions by using

8.5. MODEL EXTENSION FOR A COMPRESSIBLE FLUID IN 2D 177

the force balance at the interface

τxy = µ
∂u

∂y
=

E

2

∂dξ

∂η
(8.56)

Thus,

∂dξ

∂η
=

2

E
µ

∂u

∂y
=

2

E

(

−1

4
ρg

)

. (8.57)

At steady state
∂dξ

∂η
is constant for all η within the solid domain. Suppose that the distance

of the interface to the wall is ∆η = 0.5, the displacement of the interface of the stationary

solution can be approximated by

dξ,interface =
∂dξ

∂η
∆η (8.58)

= −ρg∆η

2E
(8.59)

= 0.0018 for E = 4 (8.60)

The simulation results in a displacement of d = 0.0014 which is in good agreement with

the estimated displacement.

Chapter 9

Conclusions

9.1 Introduction

The simulation of soft biological tissue is a crucial component of surgical simulator sys-

tems. The complexity of biomechanical systems leads to several numerical challenges,

such as the handling of complex geometries and interactions with medical devices and

body fluids.

This thesis has addressed a number of issues pertaining to the particle simulation of

complex multi-physical systems for the use in virtual surgery. In particular, we have

developed several numerical techniques for particle methods to improve their feasibility

for virtual surgery environments. We presented a novel Lagrangian Particle Level Set

method for accurate surface capturing. We considered a novel particle Immersed Bound-

ary Method to handle complex geometries with fluid environments and demonstrated its

use in fluid-structure interactions for anguilliform swimming. Moreover, we employed

for the first time the remeshing technique in particle simulations of elastic solids. This

also involved the development of a novel Lagrangian particle model for nonlinear elastic

solids. In general, we can conclude that particles are viable tools for the use in virtual

surgery. The main contributions and conclusions of this thesis are summarized below.

9.2 Particle Level Set Method

A reliable surface description is of central importance for the simulation of tissue in sur-

gical simulators. To capture surfaces and interfaces we developed a novel Lagrangian

180 CHAPTER 9. CONCLUSIONS

particle level set method. The method is adaptive as particles adapt to resolve the evolu-

tion of the level sets and a consistent remeshing procedure is employed in order to ensure

the convergence of the method when the particles get distorted by the flow map. Remesh-

ing also enables the use of fast marching methods for the reinitialization of the level sets.

The Lagrangian particle method provides a bridging description of interface tracking and

interface capturing methodologies as it is adaptive and at the same time involves an im-

plicit description of the interface. In Chapter 3, the efficiency and accuracy of the method,

as well as a comparison with related methodologies, is demonstrated in a number of two

and three dimensional benchmark problems. The method is shown to be well capable in

curvature induced motion and it is capable of capturing changes in surface profiles, such

as they may occur in the simulation of the etching and deposition processes. The simplic-

ity of the method in reconstructing interfaces by a linear particle superposition makes it

suitable for rapid tracking of large deformations and cutting of interfaces in virtual surgery

environments where fast simulations of cutting of biological tissue is necessary.

9.3 Simulation of Elastic Solids

A reliable simulation of a tissue modeled as an elastic solid is essential in virtual surgery.

In Chapter 5, we presented a particle solver for elastic solids that can handle linear and

nonlinear constitutive models. We simulated, for the first time, an elastic solid described

by a nonlinear hyperelastic model in a Lagrangian framework. The model development

required a new set of governing equations that contained the evolution of the deformation

gradient. The remeshing scheme resolves the numerical problem of tensile instability and

assures the convergence of the method. We showed that the particle formulation has a

similar accuracy as the finite element method. In the plane strain compression test, the

finite element solution reveals severe numerical artifacts in regions where the material is

forced to rotate 90 degrees. In contrast, the particle solution remains physically plausible.

The particle solver can handle the material rotation in a more reliable way due to its

Lagrangian methodology for both linear and nonlinear elasticity problems. We showed

9.4. PARTICLE IMMERSED BOUNDARY METHOD 181

that the particle solver is suitable to simulate soft biological tissue exposed to an aspiration

test. A comparison with the experimental measurement showed that particle solution

captures the displacement of the tissue very well.

In Chapter 6, parallel scaling and efficiency were assessed in several test cases. All

applications showed parallel efficiencies reaching or exceeding the present state of the art,

and favorable run-times on large systems. We presented a state of the art PSE simulation

using 1 billion particles, a VM simulation using 268 million particles – to our knowledge

the largest VM done so far –, an SPH simulation exceeding the parallel efficiency of the

currently fastest domain-specific code, simulations sustaining up to 33% of the machine

peak performance, and a multigrid Poisson routine solving for half a billion unknowns in

less than 7 seconds on 64 processors. Moreover, vectorization as tested on the NEC SX-5

computer demonstrated the suitability of the PPM library for vector architectures.

9.4 Particle Immersed Boundary Method

In Chapter 7, we considered a novel particle Immersed Boundary method for solving the

no-slip boundary condition on complex boundaries in two and three dimensions. This

method offers accurate particle simulations of flow-structure interaction. At a Mach

Number of 0.1 the simulations agree well with the corresponding incompressible solu-

tions. The accuracy of the method, as well as comparison with related methodologies,

is demonstrated in a number of two and three dimensional benchmark problems involv-

ing flow past a cylinder and sphere. The method is shown to be well capable in solving

fluid-structure interaction. The simplicity of the method in handling complex boundaries

makes it suitable for simulating complex movement of flexible structures as they appear,

for example, in anguilliform swimming. A drawback of this method is associated with

the compressibility of the flow. Fast motions of the boundary in low viscous flow cause

pressure waves in the fluid that can lead to numerical problems. Due to pressure waves

the time step is restricted by the inverse of the speed of sound.

182 CHAPTER 9. CONCLUSIONS

9.5 Fluid-Solid Interactions

The unified formulation of the fluid-solid interactions proposed in [39] provides an elegant

description of the fluid-structure interaction since it avoids the need of explicitly tracking

the interface. In Chapter 8, we presented two rSPH solutions to this problem, one with

anisotropic diffusion, and one with one-sided differentiation. The simulations have shown

that rSPH solutions are more robust and more accurate than the ALE method. Due to a

different treatment of the interface, the hybrid finite-difference PSE solution of Cottet

[39] provides more accurate results than the rSPH approaches. Comparing the two rSPH

approaches, the rSPH with anisotropic diffusion is computationally less expensive, and is

more accurate. However it relies on a displacement of a fluid particle whose value needs

to be extrapolated. In this respect, it is more natural to use the one-sided differentiation

approach.

We extended this model to consider compressible fluids in one and two dimensions.

This model required a continuity equation, an equation of state and a pressure term in the

momentum equation.

We employed the one-sided differentiation approach because the evaluation of the dis-

placement in the fluid and the Jacobian matrix become obsolete. However, special atten-

tion is required for the preservation of the continuity in the velocity profile.

The accuracy of the two-dimensional implementation is demonstrated in two test cases.

The first test is the two-dimensional extension of the one-dimensional case, and tests

the impact of the normal stresses. The cross-section of the two-dimensional velocity

distribution matches well with the one-dimensional result. The second test considers a

channel flow where the material behavior is mainly influenced by shear stresses. The

result compares well with the analytical flow profile in steady state. As expected, the

steady state displacement of the interface is proportional to the reciprocal value of the

solid stiffness, namely the Young’s modulus.

9.6. PARALLEL PARTICLE-MESH LIBRARY 183

9.6 Parallel Particle-Mesh Library

The Parallel Particle-Mesh library (PPM) provides a general-purpose, physics-

independent infrastructure for simulating systems using particle methods. The library

integrates particle, mesh, and hybrid particle-mesh algorithms and its design goals include

ease of use, flexibility, state-of-the-art parallel scaling, good vectorization, and platform

independence. The library provides a computational tool for large scale simulations using

particle methods.

Flexibility and independence from specific physics was demonstrated by having various

simulation client applications from fluid mechanics (SPH, VM) to diffusion problems

(PSE).

Chapter 10

Outlook and Future Work

This chapter outlines the possible extensions of the present work as well as potential

application in future research.

10.1 Particle Methods

Particle methods will offer a robust and flexible tool for simulating material behavior. Its

accuracy, however, can be improved, for example, by the use of higher order kernels [54].

Resolving the complex structure of these kernel requires a significantly large number

of particles in the kernel support resulting in a higher computational cost per particle.

Another aspect is the treatment of boundary conditions. In general, further investigation

is needed to achieve higher accuracy at boundaries. The commonly used normalization of

the superposition and the use of image or ghost particle leads to first-order accuracy only.

10.2 Particle Simulation of Fluids

In terms of computational cost, it is promising to employ mesh-based derivative approxi-

mation, such as in Particle-Mesh Hydrodynamics [31]. The particles carrying the physical

quantities move with the material velocity and are redistributed on mesh positions every

time step. Mesh-based Finite-difference approximations determine the further particle

evolution governed by the particle equations.

Moreover, particle multi-scaling techniques [18, 97] in space and time may improve

the computational performance of the particle simulations. A local refinement in the

186 CHAPTER 10. OUTLOOK AND FUTURE WORK

region of interest or a numerical singularity will increase the accuracy and reliability of the

simulation significantly. Adaptive time integration schemes adjust the time step according

to the current situation and may lead to a large speed up with respect to computational

time.

10.3 Particle Simulation of Elastic Solids

The presented particle solver for elastic solids will offer an promising alternative to the

finite element solver, an established solver for continuum mechanics problems. However,

the particle solver should be tested on more problems concerning stability and flexibility.

Towards the use in virtual surgery, possible extensions include the development of particle

model for further nonlinear elasticity models, collision detection and collision handling

allowing for virtual cutting [21]. In particular, the issue of modeling viscosity effects

needs further investigation.

Soft biological tissue can often be approximated by an incompressible material. There-

fore, it may be possible to improve the computational efficiency of the solver for the use

in virtual surgery, similar to the fluid simulations. Some of the techniques for achieving a

zero divergence velocity field may also be applicable to solid simulation, for example the

projection method. Exploiting the incompressibility of soft biological tissue may lead to

stable simulations with larger time steps.

A further improvement in the terms of computational efficiency may be achieved by the

Particle-Mesh Hydrodynamics approach [31], as mentioned in Section 10.1.

Particle simulations are particularly useful in systems where the solid undergoes large

deformations or has a complex geometric structure. Therefore, particle solvers are

promising tools in the simulation of challenging engineering problems. Potential applica-

tions of the particle solid solver range from the investigation of epithelial lumen formation

in cells [189] over the development of gaskets and tires [184] to investigation of fracture

behavior in concrete [129].

10.4. PARTICLE IMMERSED BOUNDARY METHOD 187

10.4 Particle Immersed Boundary Method

The particle immersed boundary method enables the realization of the no-slip bound-

ary condition for complex boundaries in particle fluid simulation. This method can be

exploited, for example, in biomedical simulation of the blood circulation in the human

body. The simulation of vascular valves in blood flow could help in the development of

cardiac artificial valves to prevent a vascular stenosis [7].

In problems involving water or blood flow, the compressibility of the fluid can be ne-

glected. Therefore, it may be computational more efficient to consider the Navier-Stokes

equation of an incompressible fluid. As the speed of sound limits the time-step in simu-

lations of compressible fluids, the consideration of an incompressible fluid would allow

for stable simulations using larger time steps. However, the simulation of incompressible

fluid requires a numerical scheme to ensure the zero divergence of the velocity field. This

can be accomplished by either solving the Poisson equation for the pressure directly [71]

or by a projection method [47]. Koshizuka et al. [94, 95, 186], for example, keeps the

particle density constant by introducing a corrective pressure term obtained by solving a

Poisson equation. Recently, Colin [38] presented a particle solution of the Helmholtz-

Hodge decomposition to solve for a zero divergence velocity field.

The present methodology can be extended to consider viscoelastic fluid [55]. Viscoelas-

tic models are important in blood simulations because they take the non-Newtonian char-

acter of blood into account.

The particle immersed boundary method cannot only applied to fluids but can be extend

to other material, such as elastic solid. The enforcement of a no-slip boundary condition

would lead a fixed boundary of the solid.

10.5 Fluid-Solid Interaction

The present implementation of fluid-solid interaction is useful for two-dimensional prob-

lems. It can be extended to three dimensions by considering the three-dimensional stress

balance at the interface. A Drawback of the model is the consideration of two differ-

188 CHAPTER 10. OUTLOOK AND FUTURE WORK

ent coordinate systems, in a Lagrangian and an Eulerian frame. This is inconvenient

not only for the derivation of the model but also for the implementation, in particular in

higher dimensions. As a result, the remeshing scheme, for example, is only applied to

the fluid particles. A limitation to one coordinate system would, therefore, be desirable,

particularly in respect to a parallel implementation. A solution to this problem can be the

replacement of the Eulerian solid description by a Lagrangian description as presented in

Section 5.

For surgical simulations, the behavior of soft biological requires the consideration of

nonlinear elasticity and viscoelasticity effect. Therefore, it is essential to embed nonlinear

elasticity and viscoelasticity models into the implementation. The particle solver can

then be applied for simulations in the area of angioplasty [60]. Angioplasty is a medical

procedure in which a balloon is used to open narrowed or blocked blood vessels of the

heart (coronary arteries). After a heart attack it is often necessary to place a stent into

the affected blood vessel. Particle simulations of fluid-solid interactions could help to

optimize the shape of such stents.

A further example of flow-tissue interactions is the behavior of endothelial cells at the

vascular wall. They are known to function in many physiological processes, e.g. blood

pressure control. The endothelial tissue lines the interior surface of blood vessels and

reacts very sensitively to the ambient blood flow. It is known that the endothelial cells

change their shape according to the shear stresses acting in the flow.

10.6 Parallel Particle-Mesh Library

The PPM library will be a useful computational tool for challenging problems in large-

scale particle-mesh simulations.

The next major version will include support for multi-level structures with selectively

allocated memory patches that can be arbitrarily placed in the computational domain. This

will enable the implementation of multi-domain and multi-level particle schemes in the

spirit of mesh-oriented projects such as CHOMBO [9]. Solvers based on Adaptive Mesh

10.7. LAGRANGIAN PARTICLE LEVEL SET METHOD 189

Refinement [18] can be added to the library architecture. Integration of modern software

engineering concepts may improve the maintainability and flexibility of the code to ease

the use of the library.

10.7 Lagrangian Particle Level Set Method

The Lagrangian Particle Level Set method to capture interfaces and surfaces can be em-

ployed virtually in every systems where interfaces are evolved.

Besides for simulations in virtual surgery and microchip fabrication, as shown in Section

3, level set method can be used, for example, in computer graphics, in computer vision and

engineering problem [147]. In computer graphics, the level set method can be exploited

for smoothing contours and noise removal in images. In computer vision, mesh-based

level set methods are popular for shape detection in images. Therefore, the particle level

set method may be useful for the three-dimensional segmentation of human organ for

medical purposes. Within this scope, level set methods enjoy a good reputation for their

stability and clarity of the resulting structures. Further possible engineering application

include the interface capturing in combustion, crystal growth and dendritic solidification.

Since the signed distance function of the level set approach provides the signed distance

information to the surface, the level set method may be extendable to detect collision of

objects and may be involved in the collision handling. However, the aspect of efficiency

needs further investigation within this scope.

Appendix A

A Virtual Cutting Approach Using a Simplified Solid

Model

An important issue in virtual surgery simulation is the treatment of collisions with the

biological tissue. While other researchers focus on the modelling of tissue interaction

with a scalpel using tetrahedral meshes [21], this chapter presents the possibilities of

using Smoothed Particle Hydrodynamics (SPH) based on a simpified solid model. The

underlying computational structure, the set of particles, is not affected by the cut, only the

particle-particle interactions resulting in a conservation of mass.

A.1 Governing Equations and Particle Discretization

As in [82], the mechanical behavior of soft biological tissue is modeled as a linear vis-

coelastic material for small strains. The momentum equation is expressed by

ρ
Du

Dt
= ∇ · σ + fext, (A.1)

where ρ is the density and u is the velocity. For simplicity, we approximate the density

by ρ = 1 and the divergence is taken with respect to the initial positions. D
Dt

denotes the

material derivative. fext is an external body force, here a gravitational force and σ is the

Cauchy stress tensor that depends on the constitutive model of the considered material.

The solid model is based on the generalized Hooke’s law and is extended by the Kelvin–

Voigt damping model [85]. Thus, the components σij of the stress tensor σ depend linearly

192 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

on the components εij of the Cauchy Green strain tensor ε and the strain rate ε̇ij ,

σij = 2µ(εij + T ε̇ij) + λδij(εkk + T ε̇kk) (A.2)

The indices i, j, k = 1, 2, 3 follow the Einstein’s summation convention and δij is the

Kronecker delta symbol. The time constant T is the relaxation time of the damping, and

µ and λ are the Lame constants,

µ =
E

2(1 + ν)

λ =
νE

(1 − 2ν)(1 + ν)
(A.3)

where E represents the Young’s modulus and ν the Poisson ratio.

The components εij of the strain tensor are proportional to the spatial derivative of the

displacement d,

εij =
1

2

(
∂di

∂ξj

+
∂dj

∂ξi

)

, (A.4)

where ξ is the reference position, that is in this case equivalent to the initial position.

Combining Eqs. (A.1), (A.2) and (A.4)results in Eqs. (A.5)–(A.7) below.

A.1. GOVERNING EQUATIONS AND PARTICLE DISCRETIZATION 193

Du1

Dt
= (2µ + λ)

∂2d1

∂ξ2
1

+ λ
∂2d2

∂ξ1∂ξ2
+ λ

∂2d3

∂ξ1∂ξ3
(A.5)

+ µ(
∂2d1

∂ξ2
2

+
∂2d2

∂ξ1∂ξ2

) + µ(
∂2d3

∂ξ3∂ξ1

+
∂2d1

∂ξ2
3

)

+ T
(

(2µ + λ)
∂2u1

∂ξ2
1

+ λ
∂2u2

∂ξ1∂ξ2
+ λ

∂2u3

∂ξ1∂ξ3

+ µ(
∂2u1

∂ξ2
2

+
∂2u2

∂ξ1∂ξ2
) + µ(

∂2u3

∂ξ3∂ξ1
+

∂2u1

∂ξ2
3

)
)

Du2

Dt
= λ

∂2d1

∂ξ1∂ξ2
+ (2µ + λ)

∂2d2

∂ξ2
2

+ λ
∂2d3

∂ξ2∂ξ3
(A.6)

+ µ(
∂2d1

∂ξ2∂ξ1

+
∂2d2

∂ξ2
1

) + µ(
∂2d2

∂ξ2
3

+
∂2d3

∂ξ2∂ξ3

)

+ T
(

λ
∂2u1

∂ξ1∂ξ2
+ (2µ + λ)

∂2u2

∂ξ2
2

+ λ
∂2u3

∂ξ2∂ξ3

+ µ(
∂2u1

∂ξ2∂ξ1
+

∂2u2

∂ξ2
1

) + µ(
∂2u2

∂ξ2
3

+
∂2u3

∂ξ2∂ξ3
)
)

Du3

Dt
= λ

∂2d1

∂ξ1∂ξ3

+ λ
∂2d2

∂ξ2∂ξ3

+ (2µ + λ)
∂2d3

∂ξ2
3

(A.7)

+ µ(
∂2d1

∂ξ3∂ξ1
+

∂2d3

∂ξ2
1

+ µ(
∂2d2

∂ξ3∂ξ2
) +

∂2d3

∂ξ2
2

)

+ T
(

λ
∂2u1

∂ξ1∂ξ3
+ λ

∂2u2

∂ξ2∂ξ3
+ (2µ + λ)

∂2u3

∂ξ2
3

+ µ(
∂2u1

∂ξ3∂ξ1

) +
∂2u3

∂ξ2
1

+ µ(
∂2u2

∂ξ3∂ξ2

+
∂2u3

∂ξ2
2

)
)

We solve Eqs. (A.5)–(A.7) by using the SPH methology. The spatial derivatives of the

displacement based on the initial position can be approximated by the use of Eq.(2.20).

As a result, particles carry both an initial position ξp as well as the current position xp of

the particle. They are related by

xp = ξp + dp, (A.8)

where dp is the displacement of the particle.

The particle velocity up evolves according to ODEs based on Eqs. (A.5)–(A.7) where

the material derivative becomes a standard time derivative and the spatial derivatives with

194 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

respect to the initial position are discretized using Eq. 2.20. Since the particle are initial-

ized on a regular map, the particle overlap at all times and the accuracy is assured without

remeshing.

A.1.1 Integration Method

Integration of the particles involves a third order Beeman integrator [15]

u(t + δ) = u(t) + δ(
5

3
a(t) +

2

3
a(t − δ) − 1

12
a(t − 2δ)) (A.9)

x(t + δ) = x(t) + δ(u(t) +
2

3
a(t − δ)δ − 1

6
a(t − 2δ)δ) (A.10)

Note that this scheme only uses one evaluation per time–step, in contrast to other high

order methods, such as Runge–Kutta schemes. However, to obtain a higher order, the

integration is based on an interpolation of the acceleration in time. This means that sudden

changes in the topology (e.g. by cutting or pushing particles) can result in instabilities.

For performance reasons, this integration scheme is used whenever possible. A simpler

Euler–Cromer integrator (Eqs. (A.11)–(A.12)) is used temporarily when the particles are

subject to sudden changes, as well as to initialize Eqs. (A.9)–(A.10) at the beginning of

the simulation.

u(t + δ) = u(t) + a(t)δ (A.11)

x(t + δ) = x(t) + u(t + δ)δ (A.12)

A.1.2 Visualization of the surface

We use the marching cubes algorithm to evaluate the surface based on the density distri-

bution. The density is evaluated by

ρ(x) =
∑

b

mbζε(x − xb), (A.13)

where the particle mass mb is chosen to be mb = Vbρinit. The initial density ρinit is

assumed to be 1.

A.2. BOUNDARY CONDITIONS 195

For performance reasons, a simplified kernel was used for evaluating the density

ζε(x) =
1

ε3
(1 − ‖x‖

ε
). (A.14)

The computational performance of the simulation is improved by the use of Cell Lists

(cf. Section 6.5)

A.2 Boundary Conditions

To get a well posed problem, Eqs. (A.5)–(A.7) need to be associated with initial and

boundary conditions. The initial condition describes the initial velocity profile of the

material. Two different types of boundary conditions are considered.

• Fixed boundaries, used to clamp the material, enforce a given displacement at the

boundary.

• Stress–free boundaries are boundaries where the surface traction is 0.

A.2.1 Ghost Particles

In this chapter, the implementation of the boundary conditions is based on ghost particles

(ghosts), inspired by [162].

Ghosts are particles residing outside of the actual domain. They are purely passive

particles that don’t evolve. However, ghosts are accounted for in the superposition of Eq.

(2.20). Furthermore, while they have specific initial positions ξ, their displacements d

are adjusted on the fly according to the underlying boundary condition.

The advantage of this method lies in its efficiency, since it circumvents the need of

one-sided differentiation.

In the following sections, the displacement field for a particle a is calculated. Its dis-

placement is denoted as da. Similarly, g denotes a ghost particle, with dg being its dis-

placement.

196 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

For simplicity, we consider the material in the shape of a cube. Ghost particles are added

in layers around the cube, where the number of layers needed is determined by the support

radius of the kernel.

A.2.2 Fixed Boundary

The goal of a fixed boundary condition to impose a specific displacement at the boundary.

Since particles are, in general, not located on the boundary, the idea is obtain the

desired displacement by adjusting the ghost particles displacement outside of the domain

accordingly.

During the calculation of the particle evolution based on Eqs. (A.5)–(A.7), the displace-

ment dg of ghost particle g is linearly extrapolated on the fly such that the displacement

on the boundary satisfies the boundary condition.

For instance, if the material is clamped to a horizontal y−z plane at position ξplane, with

a displacement of dboundary, one obtains Eq. (A.15). ξ and ξa denote the x-component

of the initial position.

Figure A.1 shows a one-dimensional equivalent.

dg =
ξg − ξa

ξplane − ξa
(dboundary − da) + da (A.15)

A.2.3 Stress-free Boundary

On a stress-free boundary, the displacement quantities have to behave, such that no force

acts on the surface. The stress-free boundary ghosts behave like a passive, unstretched

material that is glued to the real soft material.

This is accomplished by linking each ghost particle to an actual particle on the boundary

of the domain, called neighbor. Whenever ghost particle g is consulted, its displacement

A.2. BOUNDARY CONDITIONS 197

Figure A.1: Fixed boundary using ghost particles in 1D

dg is equal to the displacement of this neighbor.

dg = dn (A.16)

Figure A.2 shows how ghost particles are linked to parent material particles for different

boundaries. Note that for the third case, it is not clear where g should adjust to when

considered during the calculation of particle d. Best results were achieved by using an

average of g’s two orthogonal neighbors a and b.

Figure A.2: Stress–free boundary using ghost particles

198 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

A.3 Virtual Cutting Using Ghost Particles

During the cutting processes material is split into parts creating new boundaries with the

stress-free boundary condition holds. In this section, two approaches based on ghost

particles are described to realize virtual cutting.

A.3.1 Basic Idea

At a stress–free boundary, a ghost particle usually adapts to on neighbor particle. During

cutting, new stress-free boundaries are created between particles. Thus, ghost particles at

the cut have at least two direct neighbors, as shown in Figure A.3. In the following, N
denotes the set of neighbors for a ghost particle.

Figure A.3: Ghost particles in a cut

When a ghost is considered during the SPH approximation of Eqs. (A.5)–(A.7) for a

particle a, the displacement of the closest material neighbor particle is considered. To

determine the closest neighbor, we need to compute the normalized vectors from the

ghost particle g to the particle a (Eq. (A.17)) to the set of neighbor particles (Eq. (A.18)).

d1 =
ξa − ξg

‖ξa − ξg‖
(A.17)

d2n =
ξn − ξg

‖ξn − ξg‖
, for all n ∈ N (A.18)

A.3. VIRTUAL CUTTING USING GHOST PARTICLES 199

During the evaluation of the evolution of particle a, the ghost g adapt to the neighbor

maximizing the dot product of Eqs. (A.17) and (A.18).

m = arg max
n∈N

d1 · d2n (A.19)

If the maximum is ambivalent (i.e., two or more neighbors have the same dot prod-

uct up to tolerance εtol), the displacements of the corresponding neighbors are averaged

accordingly.

A.3.2 Cutting by Converting Particles

A first approach for cutting is based on the conversion of particles inside the scalpel into

ghost particles. The ghost particle are linked to their immediate neighbors on the fly.

Figure A.4 shows an two-dimensional example. In a first step, the red particle p affected

by the cut is converted into a ghost particle. This means that a new stress–free boundary

is created for all of its nearest neighbors. Furthermore, the ghost particle g that previously

kept p as a neighbor has to search for a new set of neighbors, since it cannot adapt to a

ghost particle.

Figure A.4: Cutting by converting particles

This yields the following algorithm when converting a material particle p to a ghost

particle:

200 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

1. Change type of p to ghost particle.

2. Find immediate neighbors of p.

3. For all ghost particles g that had a link to particle p:

(a) Clear neighborhood of g.

(b) Find nearest material particle(s), link them.

The immediate neighbors of step 2 are defined as the 6 closest neighbors of the particle

in x, y, z-direction. Diagonal linkages did not yield better results with respect to stability.

As mentioned above, it can happen that Eq.(A.19) has not only one maximum—as

shown in case (c) of Figure A.2. As an approximation, the averaged displacement of the

two closest neighbors is chosen.

Obviously, volume is going to be lost when transforming material particles into ghost

particles. A local refinement of the cutting region may reduce this effect.

A.3.3 Cutting by Splitting Particles

Alternatively, we can split material particle by introducing hybrid particles in the vicinity

of a cut. Hybrid particles can behave as material or ghost particles, depending on the

situation. In particle interactions crossing a cut hybrid particles act as ghost particles,

otherwise as a material particle.

The consideration a hybrid particle ph during the particle superpositions for a particle p,

therefore, requires a check where the particle hp is located with respect to the cut. If it is

on the same side as particle p, the hybrid particle hp will behave like a standard material

particle, otherwise, it mirrors the displacement of the particle on the other side of the cut,

thus behaving like a ghost particle for a stress–free boundary. (Figure A.5)

A.3. VIRTUAL CUTTING USING GHOST PARTICLES 201

Figure A.5: Cutting between particles using hybrid particles

As shown in Figure A.3.3, the hybrid particle h keeps a list of all the particles within

the kernel support. For all the particles residing on the same side of the cuts as particle h

(5, 7, 8), h behaves like a standard material particle. For the other particles, the particle h

will return the displacement of the particles indicated by the arrows. Thus, h will behave

like a stress–free boundary in x–direction for particles 4 and 6, and like a stress–free

boundary in y–direction for particles 2 and 3. For the outer edge particle 1, particle h will

behave as shown in case (b) of Figure A.2.

Figure A.6: Hybrid particle h and its interactions to neighboring particles

202 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

Cut Surface

The cut surface is defined as the surface that separates two parts of an object that are to

be splitted [21]. It is inferred from the movement of the scalpel, as can be seen in Fig. A.7.

Figure A.7: Cut surface defined by scalpel

During the cutting process, the algorithm has to decide which particles are to be

separated by the cut surface. To simplify this decision, the cut surface is assumed to be

planar and rectangular.

In this thesis, only the generation of cut surfaces by translation is supported, but the

addition of rotational effects should not entail major changes.

The cut surface is defined a series of parallelograms. One parallelogram is described by

a position x and two edges represented by the vectors a and b. The vector a corresponds

to the cutting edge of the scalpel. The vector b is defined as b = x2 − x1, where x1

denotes the start point and x2 the end point of a straight cut. These are obtained from the

position of the scalpel at two subsequent time–steps t1 and t2.

The vectors ea and eb are the unit vectors of a and b, respectively.

To test whether a particle p with position xp is affected by the cut, its position is

projected onto the cut surface using the dot product. Thus, if both (x − x1) · ea and

A.3. VIRTUAL CUTTING USING GHOST PARTICLES 203

(x − x1) · eb are within the bounds specified by the cut surface’s size, particle p is

converted into a hybrid particle .

During the cutting process, the collision detection routine presented in [78] is used to

check whether the scalpel is inside the organ. If this is the case, cut surfaces are generated

as described above and stored in a list.

Note that the size of the time–step influences the sampling the scalpel positions. Large

time–steps can introduce heavy lags for the user. On the other hand, small time–steps

can not only impact computational performance, but also affect the detection of diagonal

edges. Two measures were taken: first, a cut surface is issued when the scalpel moves by

a distance larger than h
√

3, where h denotes the particle spacing. Second, cut surfaces

are chosen to overlap, i.e. if for the first cut surface, b = x2 − x1, the second cut surface

will encompass b = x3 − x1 + 1
2
(x2 − x1). This improves detection of diagonal edges

without introducing large modification of the cut surfaces.

Algorithm

The following algorithm that is used to infer the linking information from the cut sur-

face. Only the current cut surface is considered—previous cuts are inherent in the hybrid

particles.

1. Find particles whose projection fall into the cut surface, discarding particles do not

reside in the kernel support.

2. Sort particles into two sets A and B, depending on the side of the cut surface they

are.

3. Find subsets Amin and Bmin of particles that are nearest to the cut surface—these

define the actual cut in the material.

4. For each particle a ∈ A

204 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

For each particle s within particle a’s support radius, check particle

s with respect to the cut surface.

• Not at the cut surface or on same side as particle a: the relationship

between the particles s and a doesn’t change.

• On other side of cut surface: particle s has to act like a ghost particle

with respect to particle a. Thus:

(a) If s is not yet a hybrid particle, convert particle s into a hybrid

particle.

(b) Find nearest neighbor of particle s on particle a’s side of cut,

n ∈ Amin.

(c) As an action when invoked by particle a, particle s takes the

displacement dn of particle n, i.e. behaves like a stress–free

boundary particle.

5. Do the same for each particle b ∈ B

A.4 Results

This section contains a few examples of the cutting algorithms. For all examples, the

same basic setup is chosen:

A set of 729 particles reside in a cube with an additional margin of 2 ghost particles on

all sides, resulting in 2197 particles in total. The kernel support contains the 26 direct

neighbors of a particle.

The cube is pre-stretched along the x–axis with a small displacement of d(ξ) = 0.1ξ

using two wall. The other boundaries are stress–free. The time–step of the simulation is

chosen to be ∆t = 0.01.

A.4. RESULTS 205

A.4.1 Cutting by Converting Particles

Fig. A.8 shows the simulation of a cutting process by converting particles. An incomplete

perforation of the cube is done along the z–axis. Two particles are left untouched. The

material properties are:

• Poisson’s ratio ν = 0

• Young’s modulus E = 1

• Relaxation time T = 0.01

• Gravity constant = 0

Figure A.8: Cutting by converting particles

As expected, material is lost at the location of the perforation. However, the hole doesn’t

collapse in itself, due to the stress–free boundary ghosts replacing the original material

particles. The simulation is stable, even with a low damping rate with a relaxation time

of T = 0.01.

A.4.2 Cutting by Splitting Particles

We consider two test cases with different cutting directions. Fig. A.9 demonstrates the

process of cutting the cube apart along the z–axis. The material properties are:

206 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

• Poisson’s ratio ν = 0.3

• Young’s modulus E = 0.7

• Relaxation time T = 0.2

• Gravity constant = 0.1

The cube separates nicely due to the clamping of the material, and the simulation

remains stable. At an optimization level of O2, the simulation ran at about 17 frames per

second.

The other example involves a diagonal cut on the surface, as shown in Fig. A.10. Again,

the simulation remains stable and produces the a straight cut. Again, about 17 frames per

second were achieved in the simulation.

• Poisson’s ratio ν = 0

• Young’s modulus E = 1

• Relaxation time T = 0.1

• Gravity constant = 0.1

A.5 Discussion

We achieve a computational efficient particle simulation of the elastic solid by describing

the particle model based on the initial positions where the material is undeformed. As this

reference configuration is rigid in time, the particles always overlap and remeshing tech-

niques can be omitted. The boundary treatment using ghost particle is a simple approach

to impose stress–free and fixed boundary conditions in one-dimension. Its extension to

higher dimension, however, is not trivial. A straight forward extension as used in this

chapter leads to the required zero nominal stress at a free surface, but does not ensure

A.5. DISCUSSION 207

Figure A.9: Cutting by splitting particles—vertical cut

zero shear stresses. As a result, the material surface does not remain perpendicular to the

wall it is attached to. Therefore, this approach was not further pursued within this thesis.

However, both cutting algorithms work well and demonstrate the possibility to cut mate-

rial within a particle framework. An advantage of the particle approach is that no changes

to the geometry of the computational elements are necessary as in grid–based methods,

208 APPENDIX A. CUTTING USING A SIMPLIFIED SOLID MODEL

Figure A.10: Cutting by splitting particles—diagonal cut

such as finite elements.

Appendix B

Higher Order Kernels

In this chapter, we present a large collection of kernels ηβ in two and three dimensions:

η(α,β)(x) =
∂α+βη(x)

∂xα
1 ∂xβ

2

(B.1)

η(α,β,γ)(x) =
∂α+β+γη(x)

∂xα
1 ∂xβ

2∂xγ
3

(B.2)

They satisfy the moment conditions in Section 2.3 and are derived following the method-

ology of Eldredge et al. [54]. The kernels ηβ
ε are defined by

ηε(x) =
1

εd
η(|x|/ε), (B.3)

where d is the dimension and x =




x1

x2



 and |x| =
√

x2
1 + x2

2 in two dimensions and

x =








x1

x2

x3








and |x| =
√

x2
1 + x2

2 + x2
3 in three dimensions.

210 APPENDIX B. HIGHER ORDER KERNELS

B.1 Kernels in 2D

• Second order

η(0,0)(x) =
1

π
e−|x|2 (B.4)

η(1,0)(x) = (−2x1)
1

π
e−|x|2 (B.5)

η(0,1)(x) = (−2x2)
1

π
e−|x|2 (B.6)

η(2,0)(x) =
(
−2 + 4x2

1

) 1

π
e−|x|2 (B.7)

η(0,2)(x) =
(
−2 + 4x2

2

) 1

π
e−|x|2 (B.8)

η(1,1)(x) = (4x1x2)
1

π
e−|x|2 (B.9)

• Forth order

η(0,0)(x) =
(
2 − |x|2

) 1

π
e−|x|2 (B.10)

η(1,0)(x) =
(
−6 + 2|x|2

)
x1

1

π
e−|x|2 (B.11)

η(0,1)(x) =
(
−6 + 2|x|2

)
x2

1

π
e−|x|2 (B.12)

η(2,0)(x) =
(
6 + 6x2

1 − 10x2
2 − 2x4

1 + 2x4
2

) 1

π
e−|x|2 (B.13)

η(0,2)(x) =
(
6 + 6x2

2 − 10x2
1 − 2x4

2 + 2x4
1

) 1

π
e−|x|2 (B.14)

η(1,1)(x) =
(
16 − 4|x|2

)
x1x2

1

π
e−|x|2 (B.15)

B.1. KERNELS IN 2D 211

• Eighth order

η(0,0)(x) =

(

4 − 6|x|2 + 2|x|4 +
1

6
|x|6
)

1

π
e−|x|2 (B.16)

η(1,0)(x) =

(

−20 − 20|x|2 − 5|x|4 +
1

3
|x|6
)

x1
1

π
e−|x|2 (B.17)

η(0,1)(x) =

(

−20 − 20|x|2 − 5|x|4 +
1

3
|x|6
)

x2
1

π
e−|x|2 (B.18)

η(2,0)(x) =
(
20 + 20x2

1 − 60x2
2 − 25x4

1 + 10x2
1x

2
2 + 35x4

2

− 17

3
x6

1 + 5x4
1x

2
2 − 7x2

1x
4
2 −

19

3
x6

2 (B.19)

−1

3
x8

1 −
2

3
x6

1x
2
2 +

2

3
x2

1x
6
2 −

1

3
x8

2

)
1

π
e−|x|2

η(0,2)(x) =
(
20 + 20x2

2 − 60x2
1 − 25x4

2 + 10x2
2x

2
1 + 35x4

1

− 17

3
x6

2 + 5x4
2x

2
1 − 7x2

2x
4
1 −

19

3
x6

1 (B.20)

−1

3
x8

2 −
2

3
x6

2x
2
1 +

2

3
x2

2x
6
1 −

1

3
x8

1

)
1

π
e−|x|2

eight order

eight order

212 APPENDIX B. HIGHER ORDER KERNELS

B.2 Kernels in 3D

• Second order

η(0,0,0)(x) =
1

π
√

π
e−|x|2 (B.21)

η(1,0,0)(x) = (−2x1)
1

π
√

π
e−|x|2 (B.22)

η(0,1,0)(x) = (−2x2)
1

π
√

π
e−|x|2 (B.23)

η(0,0,1)(x) = (−2x3)
1

π
√

π
e−|x|2 (B.24)

η(2,0,0)(x) =
(
−2 + 4x2

1

) 1

π
√

π
e−|x|2 (B.25)

η(0,2,0)(x) =
(
−2 + 4x2

2

) 1

π
√

π
e−|x|2 (B.26)

η(0,0,2)(x) =
(
−2 + 4x2

3

) 1

π
√

π
e−|x|2 (B.27)

η(1,1,0)(x) = (4x1x2)
1

π
√

π
e−|x|2 (B.28)

η(1,0,1)(x) = (4x1x3)
1

π
√

π
e−|x|2 (B.29)

η(0,1,1)(x) = (4x2x3)
1

π
√

π
e−|x|2 (B.30)

B.2. KERNELS IN 3D 213

• Forth order

η(0,0,0)(x) =

(
5

2
− |x|2

)
1

π
√

π
e−|x|2 (B.31)

η(1,0,0)(x) =
(
−7 + 2|x|2

)
x1

1

π
√

π
e−|x|2 (B.32)

η(0,1,0)(x) =
(
−7 + 2|x|2

)
x2

1

π
√

π
e−|x|2 (B.33)

η(0,0,1)(x) =
(
−7 + 2|x|2

)
x3

1

π
√

π
e−|x|2 (B.34)

η(2,0,0)(x) =

(
21

2
+ 6x2

1 − 12(x2
2 + x2

3) − 2x4
1 (B.35)

+2(x4
2 + x4

3) + 4x2
2x

2
3

) 1

π
√

π
e−|x|2 (B.36)

η(0,2,0)(x) =

(
21

2
+ 6x2

2 − 12(x2
1 + x2

3) − 2x4
2 (B.37)

+2(x4
1 + x4

3) + 4x2
1x

2
3

) 1

π
√

π
e−|x|2 (B.38)

η(0,0,2)(x) =

(
21

2
+ 6x2

3 − 12(x2
1 + x2

2) − 2x4
3 (B.39)

+2(x4
1 + x4

2) + 4x2
1x

2
2

) 1

π
√

π
e−|x|2 (B.40)

η(1,1,0)(x) =
(
18 − 4|x|2

)
x1x2

1

π
√

π
e−|x|2 (B.41)

η(1,0,1)(x) =
(
18 − 4|x|2

)
x1x3

1

π
√

π
e−|x|2 (B.42)

η(0,1,1)(x) =
(
18 − 4|x|2

)
x2x3

1

π
√

π
e−|x|2 (B.43)

214 APPENDIX B. HIGHER ORDER KERNELS

• Sixth order

η(0,0,0)(x) =

(
35

8
− 7

2
|x|2 +

1

2
|x|4
)

1

π
√

π
e−|x|2 (B.44)

η(1,0,0)(x) =

(

−63

4
+ 9|x|2 − |x|4

)

x1
1

π
√

π
e−|x|2 (B.45)

η(0,1,0)(x) =

(

−63

4
+ 9|x|2 − |x|4

)

x2
1

π
√

π
e−|x|2 (B.46)

η(0,0,1)(x) =

(

−63

4
+ 9|x|2 − |x|4

)

x3
1

π
√

π
e−|x|2 (B.47)

η(2,0,0)(x) =

(
603

32
+

45

16
x2

1 −
381

16
(x2

2 + x2
3) −

15

8
x4

1 (B.48)

+
9

2
(x4

2 + x4
3) +

91

4
x2

2x
2
3 +

5

4
x4

1x
2
2 (B.49)

−3

4
x2

1x
4
2 − 3x2

2x
4
3 −

11

4
x4

2x
2
3

)
1

π
√

π
e−|x|2 (B.50)

η(0,2,0)(x) =

(
603

32
+

45

16
x2

2 −
381

16
(x2

1 + x2
3) −

15

8
x4

2 (B.51)

+
9

2
(x4

1 + x4
3) +

91

4
x2

1x
2
3 +

5

4
x4

2x
2
1 (B.52)

−3

4
x2

2x
4
1 − 3x2

1x
4
3 −

11

4
x4

1x
2
3

)
1

π
√

π
e−|x|2 (B.53)

η(0,0,2)(x) =

(
603

32
+

45

16
x2

3 −
381

16
(x2

1 + x2
2) −

15

8
x4

3 (B.54)

+
9

2
(x4

1 + x4
2) +

91

4
x2

1x
2
2 +

5

4
x4

3x
2
1 (B.55)

−3

4
x2

3x
4
1 − 3x2

1x
4
2 −

11

4
x4

1x
2
2

)
1

π
√

π
e−|x|2 (B.56)

η(1,1,0)(x) =

(
99

2
− 22|x|2 + 2|x|4

)

x1x2
1

π
√

π
e−|x|2 (B.57)

η(1,0,1)(x) =

(
99

2
− 22|x|2 + 2|x|4

)

x1x3
1

π
√

π
e−|x|2 (B.58)

η(0,1,1)(x) =

(
99

2
− 22|x|2 + 2|x|4

)

x2x3
1

π
√

π
e−|x|2 (B.59)

Appendix C

Moving Frameworks for Compressible Fluids

In the simulation of anguilliform swimming, the domain represents a frame moving with

the swimmer body. In this chapter, we prove according to Panton [122] that we can

accelerate the fluid with the forces acting on the body while the body itself remains at the

initial position of the noninertial coordinate system.

Let xi,t be the an inertial reference frame. The origin of the noninertial frame is moving

with the velocity Ui(t), which is arbitrary in both magnitude and direction. Rotation of

the system x̂i is not allowed. We will prove that the same equations govern the flow in the

moving system as in the inertial system. The coordinates and velocities are related by the

transformations below

x̂i = xi −
∫ t

0

Ui(τ)dτ (C.1)

t̂ = t (C.2)

ûi = ui − Ui. (C.3)

The partial derivatives for f(x̂(x, t), t̂) are given by

∂

∂xi

=
∂

∂x̂i

(C.4)

∂

∂t
=

∂

∂t̂
− Ui

∂

∂x̂i

. (C.5)

(C.6)

216 APPENDIX C. MOVING FRAMEWORKS FOR COMPRESSIBLE FLUIDS

The continuity and momentum equation in inertial coordinates is

∂ρ

∂t
+ ui

∂ρ

∂xi

=
∂ui

∂xi

∂uj

∂t
+ ui

∂uj

∂xi

= −1

ρ

(
∂p

∂xj

+
∂τij

∂xi

)

(C.7)

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)

This set of equations transforms using Eqs.(C.1)-(C.6) into

∂ρ

∂t̂
− Ui

∂ρ

∂x̂i
+ (ûi + Ui)

∂ρ

∂x̂i
=

∂ui

∂x̂i

∂ (ûj + Ui)

∂t̂
− Ui

∂ (ûj + Ui)

∂x̂i
+ (ûi + Ui)

∂ûj

∂x̂i
= −1

ρ

(
∂p

∂x̂j
+

∂τ̂ij

∂x̂i

)

(C.8)

τ̂ij = µ

(
∂ûi

∂x̂j

+
∂ûj

∂x̂i

− 2

3
δij

∂ûk

∂x̂k

)

resulting into

∂ρ

∂t̂
+ ûi

∂ρ

∂x̂i
=

∂ui

∂x̂i

∂ûj

∂t̂
+ ûi

∂ûj

∂x̂i
= −1

ρ

(
∂p

∂x̂j
+

∂τ̂ij

∂x̂i

)

− ∂Ui

∂t̂
(C.9)

τ̂ij = µ

(
∂ûi

x̂j
+

∂ûj

x̂i
− 2

3
δij

∂ûk

∂x̂k

)

.

The continuity equation remains in the same form whereas the momentum equation in-

cludes an additional acceleration term (−∂Ui

∂t̂
). This term accounts for the acceleration of

the body ∂Ui

∂t̂
and is, as expected, applied in opposite direction.

Appendix D

Bulk Viscosity

The bulk viscosity describes the viscosity effects with respect to volume change of a

material and is associated with the material pressure. The evaluation of the pressure

involves a time convolution with the time variant relaxation modulus Y (t) [1]

p(t) = Y (0)J̃(t) +

∫ t

0

Ẏ (t)J̃(t − τ)dτ. (D.1)

where J̃(t) = (J(t) − 1). The direct numerical evaluation of the convolution in time

is computationally expensive and memory-consuming because it requires the storage of

volume change history J(t). In present study, the relaxation modulus Y(t) is described by

a Prony Series of order K [1]

Y (t) =
Y ∞

1 −∑K
k=1 ḡP

k
︸ ︷︷ ︸

Ȳ

(

1 −
K∑

k=1

ḡP
k

(

1 − e
− t

τk

)
)

, (D.2)

where Y ∞ is the long term elastic modulus, τk are the characteristic times, and ḡP
k are the

Prony coefficients. Transforming Eq.(D.1) into Laplace space yields in consideration of

Eq.(D.2):

p(s) = sY (s) · J̃(s)

= sȲ

(

1

s
−

K∑

k=1

ḡP
k

1

s(1 + τks)

)

· J̃(s)

=

(

1 −
K∑

k=1

ḡP
k

1

1 + τks

)

· Ȳ J̃(s)

=

K∑

k=0

p̄k(s) (D.3)

218 APPENDIX D. BULK VISCOSITY

where

p̄0(s) = Ȳ J̃(s), (D.4)

p̄k(s) = − ḡP
k

1 + τks
Ȳ J̃(s), k = 1..K. (D.5)

Eq.(D.5) is equivalent to a set of ODE in real space when it is rewritten as

p̄k(s) + τksp̄k(s) = −ḡP
k Ȳ J̃(s), k = 1..K. (D.6)

Finally, we obtain the pressure p(t) in real space as composition of K + 1 terms p̄k(t)

where K terms are governed by ODEs of first order

p(t) =
K∑

k=0

p̄k(t), (D.7)

p̄0(t) = Ȳ J̃(t)

=
Y ∞

1 −∑K
k=1 ḡP

k

(J(t) − 1), (D.8)

p̄k(t) + τk ˙̄pk(t) = −ḡP
k Ȳ J̃(t)

= −ḡP
k

Y ∞

1 −∑K
k=1 ḡP

k

(J(t) − 1), k = 1..K. (D.9)

The set of equations (D.7) - (D.9) replaces evaluation of Eq.(D.1). Since the order K

of the Prony Series is low in an average application, the computational effort to solve Eq.

(D.7) - (D.9) is much smaller than solving the time convolution of Eq.(D.1).

Bibliography

[1] Abaqus User’s Manual Version 6.4. Abaqus, Inc., 2003.

[2] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating inter-

faces. J. Comput. Phys., 118(2):269–277, 1995.

[3] D. Adalsteinsson and J. A. Sethian. A level set approach to a unified model for

etching, deposition, and lithography I: algorithms and 2-dimensional simulations.

J. Comput. Phys., 120(1):128–144, 1995.

[4] D. Adalsteinsson and J. A. Sethian. A level set approach to a unified model for

etching, deposition, and lithography II: 3-dimensional simulations. J. Comput.

Phys., 122(2):348–366, 1995.

[5] M. F. Adams, H. H. Bayraktar, T. M. Keaveny, and P. Papadopoulos. Ultrascalable

implicit finite element analyses in solid mechanics with over half a billion degrees

of freedom. In Proceedings of SC2003: High Performance Networking and Com-

puting, page Gordon Bell Award paper. ACM/IEEE, 2004.

[6] V. Alexiades, G. Amiez, and P.-A. Gremaud. Super-time-stepping acceleration

of explicit schemes for parabolic problems. Commun. Numer. Meth. Engng.,

12(1):31–42, 1996.

[7] C. Alexiou, M. Galogavrou, Q. Chen, A. McDonald, A. P. Salmon, B. K. Keeton,

M. P. Haw, and J. L. Monro. Mitral valve replacement with mechanical prostheses

in children: improved operative risk and survival. Eur. J. Cardiothorac Surgery,

20:105–113, 2001.

220 Bibliography

[8] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon Press

Oxford, Oxford, 1987.

[9] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A conser-

vative adaptive projection method for the variable density incompressible Navier-

Stokes equations. J. Comput. Phys., 142:1–46, 1998.

[10] N. Ayache. Epidaure: A research project in medical image analysis, simulation and

robotics at INRIA. IEEE Transaction on Medical Imaging, 2003. Invited Editorial.

[11] C. Basdogan, C.-H. Ho, and M. Srinivasan. Virtual environments in medical train-

ing: Graphical and haptic simulation of laparoscopic common bileduct exploration.

IEEE/ASME Transactions on Mechatronics, 6(3):269–285, 2001.

[12] P. Bashook and J. Parboosingh. Continuing medical education: Recertification and

the maintenance of competence. British Medical Journal, 316:545–548, 1998.

[13] D. Baur, Ch. Guzzoni and O. Georg. Virgy: A virtual reality and force feedback

based endoscopy surgery simulator. In Proc. MMVR’98, pages 110–116, 1998.

[14] J. T. Beale. A convergent 3-D vortex method with grid-free stretching. Math.

Comput., 46:401–424, 1986.

[15] D. Beeman. Some multistep methods for the use in molecular dynamics calcula-

tions. J. Comput. Phys., 20:130–139, 1976.

[16] J. B. Bell, P. Colella, and H. M. Glaz. A 2nd-order projection method for the

incompressible Navier Stokes equations. J. Comput. Phys., 85(2):257–283, 1989.

[17] G. Bentel. Radiation Therapy Planning. McGraw Hill, Inc., 1995.

[18] M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle

methods for convection-diffusion equations. Multiscale Model. Simul., 4(1):328–

357, 2005.

Bibliography 221

[19] M. Bergdorf and P. Koumoutsakos. A Lagrangian particle-wavelet method. Multi-

scale Model. Simul., 5(3):980–995, 2006.

[20] J. Berkley, G. Turkiyyah, D. Berg, M. Ganter, and S. Weghorst. Real-time Finite

Element modeling for surgery simulation: Application to virtual suturing. IEEE

Transactions on Visualization and Computer Graphics, 10(3):1–12, 2004.

[21] D. Bielser, P. Glardon, M. Teschner, and M. Gross. A state machine for real-time

cutting of tetrahedral meshes. In Pacific Graphics 2003, pages 377–386, 2003.

[22] M. Bro-Nielsen. Fast finite elements for surgery simulation. In Medicine Meets

Virtual Reality, 1997.

[23] M. Bro-Nielsen, D. Helfrick, B. Glass, X. Zeng, and H. Connacher. Virtual reality

simulation of abdominal trauma surgery. In Medicine Meets Virtual Reality, 1998.

[24] I. N. Bronstein and K. A. Semendyayev. Handbook of Mathematics. Van Nostrand

Reinhold, 20 edition, 1991.

[25] S. Bryson and D. Levy. High-order central WENO schemes for multidimensional

Hamilton-Jacobi equations. SIAM J. Numer. Anal., 41(4):1339–1369, 2003.

[26] J. Carling, T. L. Williams, and G. Bowtell. Self-propelled anguilliform swimming:

simultaneous solution of the two-dimensional Navier-Stokes equations and New-

tons’ laws of motion. J. Exp. Biol., 201:3143–3166, 1998.

[27] E. A. Carmona and L. J. Chandler. On parallel PIC versatility and the structure of

parallel PIC approaches. Concurrency: Pract. Ex., 9(12):1377–1405, 1997.

[28] F. Carter, T. Frank, M. Davies, and A. Cuschieri. Measurement and modelling of

the compliance of human and porcine organs. Med. Image Anal., 5(4):231–236,

2001.

222 Bibliography

[29] A. K. Chaniotis, D. Poulikakos, and P. Koumoutsakos. Remeshed smoothed

particle hydrodynamics for the simulation of viscous and heat conducting flows.

J. Comput. Phys., 182(1):67–90, 2002.

[30] S. R. Chapple and L. J. Clarke. The parallel utilities library. In Proceedings of the

IEEE Scalable Parallel Libraries Conference, pages 21–30. IEEE, 1994.

[31] P. Chatelain, S. Hieber, P. Koumoutsakos, and G.-H. Cottet. P.M.H.: Particle-mesh

hydrodynamics. In Discrete Simulations of Fluid Dynamics, 2006.

[32] H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm in

three dimensions. J. Comput. Phys., 155:468–498, 1999.

[33] J. R. Cho and S. Y. Lee. Dynamic analysis of baffled fuel-storage tanks using the

ALE finite element method. Int. J. Numer. Meth. Fluids, 41(2):185–208, 2003.

[34] D. L. Chopp. Computing minimal-surfaces via level set curvature flow. J. Comput.

Phys., 106(1):77–91, 1993.

[35] D. L. Chopp and J. A. Sethian. Flow under curvature: Singularity formation, min-

imal surfaces, and geodesics. Exp. Mathematics, 2(4):235–255, 1993.

[36] A. J. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57(4):785–

796, 1973.

[37] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-COLLIDE: An interactive and

exact collision detection system for large-scale environments. In Symposium on

Interactive 3D Graphics, pages 189–196, 1995.

[38] F. Colin, R. Egli, and F. Lin. Computing a null divergence velocity field using

smoothed particle hydrodynamics. J. Comput. Phys., 217(2):680–692, 2006.

[39] G. Cottet. A particle model for fluid-structure interaction. C.R. Acad. Sci. Paris,

Ser. I(335):833–838, 2002.

Bibliography 223

[40] G.-H. Cottet. Artificial viscosity models for vortex and particle methods. J. Com-

put. Phys., 127:299–308, 1996.

[41] G.-H. Cottet and P. Koumoutsakos. Vortex Methods – Theory and Practice. Cam-

bridge University Press, New York, 2000.

[42] G.-H. Cottet, P. Koumoutsakos, and M. L. O. Salihi. Vortex methods with spatially

varying cores. J. Comput. Phys., 162(1):164–185, 2000.

[43] G.-H. Cottet and E. Maitre. A level-set method for fluid-structure interactions with

immersed surfaces. Math. Model Meth. Appl. Sci., 16(3):415–438, 2006.

[44] G.-H. Cottet, B. Michaux, S. Ossia, and G. VanderLinden. A comparison of spec-

tral and vortex methods in three-dimensional incompressible flows. J. Comput.

Phys., 175:702–712, 2002.

[45] G.-H. Cottet and P. Poncet. Advances in direct numerical simulation of 3D wall-

bounded flows by vortex-in-cell methods. J. Comput. Phys., 193:136–158, 2003.

[46] R. Couturier and C. Chipot. Parallel molecular dynamics using OpenMP on a

shared memory machine. Comp. Phys. Commun., 124:49–59, 2000.

[47] S. J. Cummins and M. Rudman. An SPH projection method. J. Comput. Phys.,

152:584–607, 1999.

[48] G. Debunne, M. Desbrun, M.-P. Cani, and A. Barr. Dynamic real-time deforma-

tions using space and timing adaptive sampling. In E. Fiume, editor, Conference

Proceedings SIGGRAPH, pages 31–36. ACM Press / ACM SIGGRAPH, 2001.

[49] P. Degond and S. Mas-Gallic. The weighted particle method for convection-

diffusion equations. part 1: The case of an isotropic viscosity. Math. Comput.,

53(188):485–507, 1989. Oct.

224 Bibliography

[50] P. Degond and S. Mas-Gallic. The weighted particle method for convection-

diffusion equations. part 2: The anisotropic case. Math. Comput., 53(188):509–

525, 1989. Oct.

[51] G. L. Djordjević and M. B. Tošić. A heuristic for scheduling task graphs with

communication delays onto multiprocessors. Parallel Computing, 22:1197–1214,

1996.

[52] M. Doblare, E. Cueto, B. Calvo, M. Martinez, J. Garcia, and J. Cegonino. On

the employ of meshless methods in biomechanics. Comp. Meth. Appl. Mech. &

Engng., 194:801–821, 2005.

[53] D. Durand, R. Jain, and D. Tseytlin. Parallel I/O scheduling using randomized,

distributed edge coloring algorithms. J. Parallel Distrib. Comput., 63:611–618,

2003.

[54] J. D. Eldredge, A. Leonard, and T. Colonius. A general determistic treatment of

derivatives in particle methods. J. Comput. Phys., 180(2):686–709, 2002.

[55] M. Ellero, M. Kröger, and S. Hess. Viscoelastic flows studied by smoothed particle

dynamics. J. Non-Newtonian Fluid Mech., 105(1):35–51, 2002.

[56] B. Engquist, A.-K. Tornberg, and R. Tsai. Discretization of dirac delta functions in

level set methods. J. Comput. Phys., 207(1), 2005.

[57] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set

method for improved interface capturing. J. Comput. Phys., 183(1):83–116, 2002.

[58] P. Espanol. Hydrodynamics from dissipative particle dynamics. Phys. Rev. E,

52(2):1734–1742, 1995.

[59] E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-

boundary finite-difference methods for three-dimensional complex flow simula-

tions. J. Comput. Phys., 161(1):35–60, 2000.

Bibliography 225

[60] D. L. Fishman, M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, K. De-

tre, L. Veltri, D. Ricci, M. Nobuyoshi, and M. Cleman. A randomized comparison

of coronary-stent placement and balloon angioplasty in the treatment of coronary

artery disease. The New England Journal of Medicine, 331:496–501, 1994.

[61] B. Fornberg. Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid

Mech., 190:471–489, 1988.

[62] Y. C. Fung. Biomechanics. Mechanical Properties of Living Tissues. Springer-

Verlag, 2nd edition, 1993.

[63] A. Ghoniem and O. Knio. The development and application of the transport ele-

ment method to three dimensional reacting shear layers. In Vortex Dynamics and

Vortex Methods, pages 165–218. American Mathematical Society, 1991.

[64] F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the nu-

merical simulation of dendritic growth. J. Sci. Comput., 19(1-3):183–199, 2003.

[65] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and

application to non-spherical stars. Month Notices Roy. Astron. Soc., 181:375–389,

1977.

[66] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A hierarchical structure for

rapid interference detection. Comput. Graphics, 30:171–180, 1996.

[67] J. P. Gray, J. J. Monaghan, and R. P. Swift. SPH elastic dynamics. Comp. Meth.

Appl. Mech. & Engng., 190:6641–6662, 2001.

[68] M. Grayson. The heat equation shrinks embedded plane curves to round points. J.

Diff. Geom., 26:555–558, 1987.

[69] M. Grayson. A short note on the evolution of surfaces via mean curvatures. J. Diff.

Geom., 58:285–314, 1989.

226 Bibliography

[70] L. Greengard and V. Rokhlin. The rapid evaluation of potential fields in three

dimensions. Lect. Notes Math., 1360:121–141, 1988.

[71] P. M. Gresho and R. L. Sani. On pressure boundary conditions for the incompress-

ible navier-stokes equations. Int. J. Numer. Meth. Fluids, 7:1111–1145, 1987.

[72] J. Guilkey, J. Hoying, and J. Weiss. Computational modeling of multicellular con-

structs with the material point method. Journal of Biomechanics, 39(11):2079–

2086, 2006.

[73] J. K. Hahn, R. Kaufman, A. B. Winick, T. Carleton, Y. Park, K.-M. Oh, R. Lin-

deman, N. Al-Ghreimil, R. Walsh, M. Loew, J. Gerber, and S. Sankar. Training

environment for inferior vena caval filter placement. In Proc. MMVR’98, pages

291–297, 1998.

[74] J. M. Haile. Molecular Dynamics Simulations. Elementary Methods. John Wiley

& Sons, 1992.

[75] O. H. Hald. Convergence of vortex methods for Euler’s equations, III. SIAM J.

Numer. Anal., 24(3):538–582, 1987.

[76] M. Harders, M. Bajka, U. Spaelter, S. Tuchschmid, H. Bleuler, and G. Szekely.

Highly-realistic, immersive training environment for hysteroscopy. In Medicine

Meets Virtual Reality, 2006.

[77] F. H. Harlow. Particle-in-cell computing method for fluid dynamics. Methods

Comput. Phys., 3:319–343, 1964.

[78] B. Heidelberger, M. Teschner, T. Frauenfelder, and M. Gross. Collision handling

of deformable anatomical models for real-time surgery simulation. J. Technology

and Health Care, 12(3):235–243, 2004.

Bibliography 227

[79] B. Heidelberger, M. Teschner, and M. Gross. Real-time volumetric intersections

of deforming objects. In Vision, Modeling and Visualization, pages 461–468. IOS

Press, 2003.

[80] R. D. Henderson. Details of the drag curve near the onset of vortex shedding. Phys.

Fluids, 7:2102–2104, 1995.

[81] S. E. Hieber and P. Koumoutsakos. A Lagrangian particle level set method. J. Com-

put. Phys., 210:342–367, 2005.

[82] S. E. Hieber, J. H. Walther, and P. Koumoutsakos. Remeshed smoothed particle

hydrodynamics simulation of the mechanical behavior of human organs. J. Tech-

nology and Health Care, 12(4):305–314, 2004.

[83] C. W. Hirt and B. D. Nichols. Volume of fluid (Vof) method for the dynamics of

free boundaries. J. Comput. Phys., 39(1):201–225, 1981.

[84] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Insti-

tute of Physics Publishing, Bristol, PA, USA, 2 edition, 1988.

[85] G. Holzapfel. Nonlinear Solid Mechanics. John Wiley & Sons, 2000.

[86] J. Jakimowcz. The europaen association for endoscopic surgery: Recommenda-

tions for training in laparoscopic surgery. Annales Chirurgiae et Gynaecologiae,

pages 137–141, 1994.

[87] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The large-scale

organization of metabolic networks. Nature, 407:651–654, 2000.

[88] A. T. Johnson and V. C. Patel. Flow past a sphere up to a Reynolds number of 300.

J. Fluid Mech., 378:19–70, 1999.

[89] G. Johnson and S. Beissel. Normalized smoothing functions for SPH impact com-

putations. Int. J. for Numer. Methods In Engng., 16:2725–2741, 1997.

228 Bibliography

[90] G. R. Johnson, R. A. Stryk, and S. R. Beissel. SPH for high velocity impact com-

putations. Comp. Meth. Appl. Mech. & Engng., 139:347–373, 1996.

[91] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[92] S. Kern and P. Koumoutsakos. Simulations of optimized anguilliform swimming.

J. Exp. Biol., 209(24):4841–4857, 2006.

[93] J. Kim, D. Kim, and H. Choi. An immersed-boundary finite-volume method for

simulations of flow in complex geometries. J. Comput. Phys., 171:132–150, 2001.

[94] S. Koshizuka and Y. Oka. Moving-particle semi-implicit method for fragmentation

of incompressible fluid. Nuclear Sc. Eng., 123(3):421–434, 1996.

[95] S. Koshizuka, H. Tamako, and Y. Oka. Numerical analysis of breaking waves using

the moving particle semi-implicit method. Int. J. Numer. Meth. Fluids, 26:751–769,

1998.

[96] P. Koumoutsakos. Vorticity flux control in a turbulent channel flow. Phys. Fluids,

11(2):248–250, 1999.

[97] P. Koumoutsakos. Multiscale flow simulations using particles. Annu. Rev. Fluid

Mech., 37:457–487, 2005.

[98] P. Koumoutsakos and A. Leonard. High-resolution simulation of the flow around

an impulsively started cylinder using vortex methods. J. Fluid Mech., 296:1–38,

1995.

[99] P. Koumoutsakos, A. Leonard, and F. Pépin. Boundary conditions for viscous

vortex methods. J. Comput. Phys., 113(1):52–61, 1994.

[100] U. Kuehnapfel, H. Krumm, C. Kuhn, M. Huebner, and B. Neisius. Endosurgery

simulations with KISMET: A flexible tool for surgical instrument design, operation

Bibliography 229

room planning and VR technology based abdominal surgery training. In Proc.

Virtual reality World95, pages 165–171, 1995.

[101] R. J. LeVeque. High-resolution conservative algorithms for advection in incom-

pressible flow. SIAM J. Numer. Anal., 33(2):627–665, 1996.

[102] A. Liu, F. Tendick, K. Cleary, and C. Kaufmann. A survey of surgical simulation:

Applications, technology, and education. Presence, 12(6):599–614, 2003.

[103] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface

construction algorithm. Comput. Graphics, 21(4):163–169, 1987.

[104] E. Mazza, A. Nava, M. Bauer, R. Winter, M. Bajka, and G. Holzapfel. Mechan-

ical properties of the human uterine cervix: An in-vivo study. Med. Image Anal.,

10:125–136, 2006.

[105] E. Molinari, M. Fato, G. DeLeo, D. Riccardo, and F. Beltrame. Simulation of the

biomechanical behavior of the skin in virtual surgical applications by finite element

method. IEEE Transaction on Biomedical Engineering, 52(9):1514–1521, 2005.

[106] J. J. Monaghan. Extrapolating B splines for interpolation. J. Comput. Phys.,

60(2):253–262, 1985.

[107] J. J. Monaghan. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys.,

30:543–574, 1992.

[108] J. J. Monaghan. SPH without a tensile instability. J. Comput. Phys., 159:290–311,

2000.

[109] J. J. Monaghan. Smoothed particle hydrodynamics. J. Comput. Phys., 68(8):1703–

1759, 2005.

[110] K. Montgomery, C. Bruyns, J. Brown, G. Thonier, A. Tellier, and J.-C. Latombe.

Spring: A general framework for collaborative, real-time surgical simulation. In

Medicine Meets Virtual Reality, pages 296–303, 2002.

230 Bibliography

[111] B. Moon and J. Saltz. Adaptive runtime support for direct simulation Monte Carlo

methods on distributed memory architectures. In Proceedings of the IEEE Scalable

High-Performance Computing Conference, pages 176–183. IEEE, 1994.

[112] D. W. Moore. The effect of compressibility on the speed of propagation of a vortex

ring. Proc. R. Soc. Lond. A, 397(1812):87–97, 1985.

[113] J. P. Morris. Simulating surface tension with smoothed particle hydrodynamics.

Int. J. Numer. Meth. Fluids, 33(3):333–353, 2000.

[114] National Library of Medicine. The Visible Human Project.

http://www.nlm.nih.gov/research/visible.

[115] A. Nava, E. Mazza, F. Kleinermann, N. Avis, and J. McClure. Determination of the

mechanical properties of soft human tissue through aspiration experiments. Lect.

Notes Comput. Sc., 1878:222–229, 2003.

[116] A. Nava, E. Mazza, F. Kleinermann, N. Avis, J. McClure, and M. Bajka. Eval-

uation of the mechanical properties of human liver and kidney through aspiration

experiments. J. Technology and Health Care, 12:269–280, 2004.

[117] C. Nieter and J. R. Cary. VORPAL: a versatile plasma simulation code. J. Comput.

Phys., 196(2):448–473, 2004.

[118] S. Osher and R. Fedkiw. The Level Set Method and Dynamics Implicit Surfaces.

Springer-Verlag, New York, 2002.

[119] S. Osher and R. P. Fedkiw. Level set methods: An overview and some recent

results. J. Comput. Phys., 169(2):463–502, 2001.

[120] S. Osher and J. A. Sethian. Front propagating with curvature dependent speed:

Algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys., 79(1):12–

49, 1988.

Bibliography 231

[121] M. Ottensmeyer and J. Salisbury. In vivo data acquisition instrument for solid

organ mechanical property measurement. In MICCAI’01, pages 975–982, 2001.

[122] R. L. Panton. Incompressible Flow. John Wiley & Sons, 2 edition, 1996.

[123] J. Park, K. Kwon, and H. Choi. Numerical solutions of flow past a cylinder at

Reynolds number up to 160. KSME Int. J., 12(6):1200–1205, 1998.

[124] C. Peskin. Flow patterns around heart valves: A numerical study. J. Comput. Phys.,

10:252–271, 1972.

[125] R. Peyret and T. Taylor. Computational Methods for Fluid Flow. Springer-Verlag,

1983.

[126] B. Pflesser, A. Petersik, U. Tiede, K. Hoehne, and R. Leuwer. Volume cutting for

virtual petrous bone surgery. Computer Aided Surgery, 7(2):74–83, 2002.

[127] S. J. Plimpton, M. F. Seidel, David B. Pasik, R. S. Coats, and G. R. Montry. A load-

balancing algorithm for a parallel electromagnetic particle-in-cell code. Comp.

Phys. Commun., 152:227–241, 2003.

[128] P. Ploumhans, G. S. Winckelmans, J. K. Salmon, A. Leonard, and M. S. Warren.

Vortex methods for direct numerical simulation of three-dimensional bluff body

flows: Applications to the sphere at Re = 300, 500 and 1000. J. Comput. Phys.,

178:427–463, 2002.

[129] T. Rabczuk and J. Eibl. Simulation of high velocity concrete fragmentation using

SPH/MLSPH. Int. J. for Numer. Methods In Engng., 56:1421–1444, 2003.

[130] P. W. Randles and L. D. Libersky. Smoothed particle hydrodynamics: Some recent

improvements and applications. Comp. Meth. Appl. Mech. & Engng., 139:375–

408, 1996.

[131] P. W. Randles and L. D. Libersky. Normalized SPH with stress points. Int. J. for

Numer. Methods In Engng., 48:1445–1462, 2000.

232 Bibliography

[132] J. Reddy. Finite Element Method. McGraw Hill, Inc., 2nd edition edition, 1993.

[133] M. Reznek, C. Rawn, and T. Krummel. Evaluation of the educational effectiveness

of a virtual reality intravenous insertion simulator. Academic Emergency Medicine,

9(11):1319–1325, 2002.

[134] W. J. Rider and D. B. Kothe. Reconstructing volume tracking. J. Comput. Phys.,

141:112–152, 1998.

[135] L. Rosenhead. The formation of vortices from a surface of discontinuity. Proc. R.

Soc. Lond. A, 134:170–192, 1931.

[136] A. Roshko. Experiments on the flow past a circular cylinder at very high Reynolds

number. J. Fluid Mech., 10(3):345–356, 1961.

[137] P. G. Saffman. Vortex Dynamics. Cambridge University Press, 1992.

[138] M. Sagar, D. Bullivant, G. Mallinson, and P. Hunter. A virtual environment and

model of the eye for surgical simulation. Computer Graphics and Interactive Tech-

niques, pages 205–212, 1994.

[139] R. Satava. Virtual reality surgical simulator: The first steps. Surgical Endoscopy,

7:203–205, 1993.

[140] I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and

P. Koumoutsakos. PPM – a highly efficient parallel particle-mesh library for the

simulation of continuum systems. J. Comput. Phys., 215:566–588, 2006.

[141] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and

interfacial flow. Annu. Rev. Fluid Mech., 31:567–603, 1999.

[142] M. Schill, C. Wagner, M. Hennen, H. Bender, and R. Maenner. Eyesi - A simulator

for intra-ocular surgery. In Proc. MICCAI’99, pages 1166–1174, 1999.

Bibliography 233

[143] J. Sethian. Numerical algorithms for propagating interfaces: Hamilton-Jacobi

equations and conservations laws. J. Diff. Geom., 31:131–161, 1990.

[144] J. Sethian and J. Strain. Crystal growth and dendritic solidification. J. Comput.

Phys., 98:231–253, 1992.

[145] J. A. Sethian. A fast marching level set method for monotonically advancing fronts.

Proc. Natl. Acad. Sci. USA, 93(4):1591–1595, 1996.

[146] J. A. Sethian. Fast marching methods. SIAM Rev., 41(2):199–235, 1999.

[147] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Univer-

sity Press, Cambridge, UK, 1999.

[148] J. A. Sethian. Evolution, implementation, and application of level set and fast

marching methods for advancing fronts. J. Comput. Phys., 169(2):503–555, 2001.

[149] J. A. Sethian and P. Smereka. Level set methods for fluid interfaces. Annu. Rev.

Fluid Mech., 35:341–372, 2003.

[150] K. Shariff, R. Verzicco, and P. Orlandi. A numerical study of three-dimensional

vortex ring instabilities: viscous corrections and early nonlinear stage. J. Fluid

Mech., 279:351–375, 1994.

[151] C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory

shock-capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[152] A. L. F. Silva, A. Silveira-Neto, and J. J. R. Damasceno. Numerical simulations

of two-dimensional flows over a circular cylinder using the immersed boundary

method. J. Comput. Phys., 189:351–370, 2003.

[153] S. P. Singh and S. Mittal. Flow past a cylinder: shear layer instability and drag

crisis. J. Comput. Phys., 47:75–98, 2005.

234 Bibliography

[154] M. Souli, A. Ouahsine, and L. Lewin. ALE formulation for fluid-structure interac-

tion problems. Comp. Meth. Appl. Mech. & Engng., 190(5-7):659–675, 2000.

[155] V. Springel, N. Yoshida, and S. D. M. White. GADGET: a code for collisionless

and gasdynamical cosmological simulations. New Astronomy, 6:79–117, 2001.

[156] J. Strain. A fast semi-Lagrangian contouring method for moving interfaces.

J. Comput. Phys., 161(2):512–536, 2001.

[157] M. Sussman and E. Fatemi. An efficient, interface-preserving level set redistancing

algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci.

Comput., 20(4):1165–1191, 1999.

[158] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solu-

tions to incompressible 2-phase flow. J. Comput. Phys., 114(1):146–159, 1994.

[159] J. W. Swegle, D. L. Hicks, and S. W. Attaway. Smoothed particle hydrodynamics

stability analysis. J. Comput. Phys., 116(1):123–134, 1995.

[160] G. Szekely, M. Bajka, C. Brechbuhler, J. Dual, R. Enzeler, U. Haller, J. Hug,

R. Hutter, N. Ionmenger, M. Kauer, P. Meier, P. Niederer, and G. Trister. Virtual

reality based simulation of endoscopic surgery. Presence, 9(3):310–333, 2000.

[161] G. Szekely and R. Satava. Virtual reality in medicine. British Medical Journal,

319:1305–1315, 1999.

[162] H. Takeda, S. M. Miyama, and M. Sekiya. Numerical simulation of viscous flow

by smoothed particle hydrodynamics. Prog. Theor. Phys., 92(5):939–960, 1994.

[163] H.-Z. Tang, T. Tang, and P. Zhang. An adaptive mesh redistibution method for

nonlinear Hamiltion- Jacobi equations in two- and three-dimensions. J. Comput.

Phys., 188:543–572, 2003.

[164] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models.

In ACM SIGGRAPH Computer Graphics, pages 205–214, 1987.

Bibliography 235

[165] D. Terzopoulous and K. Fleischer. Deformable models. The Visual Computer,

4:306–331, 1988.

[166] M. Teschner, S. Girod, and B. Girod. Direct computation of nonlinear soft-tissue

deformation. In Proc. Vision, Modeling, Visualization, pages 383–390, 2000.

[167] M. Teschner, B. Heidelberger, M. Muller, and M. Gross. A versatile and robust

model for geometrically complex deformable solids. In Proceedings of Computer

Graphics International, pages 312–319, 2004.

[168] M. Teschner and M. Mueller. Volumetric meshes for real-time medical simulations.

In Bildverarbeitung fr die Medizin, pages 279–283, 2003.

[169] U. Trottenberg, C. Oosterlee, and A. Schueller. Multigrid. Academic Press, San

Diego, 2001.

[170] U. U. Kuehnapfel, H. Cakmak, and H. Maass. Endoscopic surgery training using

virtual reality and deformable tissue simulation. Computer & Graphics, 24(5):671–

682, 2000.

[171] D. Valtorta and E. Mazza. Dynamic measurements of soft tissue viscoelastic prop-

erties with a torsional resonator device. Med. Image Anal., 9(5):481–490, 2005.

[172] L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties

of Lennard-Jones molecules. Phys. Rev., 159(1):98–103, 1967.

[173] K. Verstreken, J. Van Cleynenbreugel, K. Martens, and et al. An image-guided

planning system for endosseous oral implants. IEEE Transactions on Medical

Imaging, 17:842–852, 1998.

[174] D. Vining. Virtual endoscopy: Is it reality. Radiology, pages 30–31, 1996.

[175] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Anal.,

3:25–30, 1964. in Russian.

236 Bibliography

[176] R. Wachter. Evidence Report/Technology Assessment, No. 43, Making Health Care

Safer: A Critical Analysis of Patient Safety Practices. Agency for Healthcare Re-

search and Quality, 2001.

[177] J. H. Walther and P. Koumoutsakos. Three-dimensional particle methods for parti-

cle laden flows with two-way coupling. J. Comput. Phys., 167:39–71, 2001.

[178] Q. Wang. Variable order revised binary treecode. J. Comput. Phys., 200:192–210,

2004.

[179] R. Webster, D. Zimmerman, B. Mohler, M. Melkonian, and R. Haluck. A proto-

type haptic suturing simulator. In J. Westwood and et al., editors, Medicine Meets

Virtual Reality, pages 567–569, 2001.

[180] D. C. Wilcox. Basic Fluid Mechanics. DCW Industries, second edition edition,

2000.

[181] C. H. K. Williamson. Oblique and parallel modes of vortex shedding in the wake of

a circular cylinder at low Reynolds numbers. J. Fluid Mech., 206:579–627, 1989.

[182] J. H. Williamson. Low-storage Runge-Kutta schemes. J. Comput. Phys., 35:48–56,

1980.

[183] WordNetSearch. http://www.cogsci.princeton/cgi-win/webbwn,

2006.

[184] B. Wu and X. Du. Finite element formulation of radial tires with variable constraint

conditions. Computers & Structures, 55(5):871–875, 1993.

[185] X. Wu, M. C. Vargas, S. Nayak, V. Lotrich, and G. Scoles. Towards extending

the applicability of density functional theory to weakly bound systems. J. Chem.

Phys., 115(19):8748–8757, 2001.

[186] H. Y. Yoon, S. Koshizuka, and Y. Oka. Particle-gridless hybrid method for incom-

pressible flows. Int. J. Numer. Meth. Fluids, 30:407–424, 1999.

Bibliography 237

[187] N. Zabusky, M. Hughes, and K. Roberts. Contour dynamics for the euler equations

in two dimensions. J. Comput. Phys., 30:96–106, 1979.

[188] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids.

J. Comput. Phys., 31(3):335–362, 1979.

[189] D. Zeng, A. Ferrari, J. Ulmer, A. Veligodskiy, P. Fischer, J. Spatz, Y. Ventikos,

D. Poulikakos, and R. Kroschewki. Three-dimensional modeling of mechanical

forces in the extracellular matrix during epithelial lumen formation. 90:4380–4391,

2006.

[190] P. Zerfass, Z. Krol, B. von Rymon-Lipinski, T. Jansen, and E. K. Keeve. Towards

a virtual environment for biomechanical simulation. In Proceedings Computer

Assisted Radiology and Surgery CARS’01, Berlin, Germany, 2001.

[191] R. Ziegler, W. Müller, G. Fischer, and M. Goebel. A virtual reality medical training

system. In Proc. first In. Conf. on Comp. Vision, Virtual Reality and Robotics in

Medicine, CVRMed’95, pages 282–286, 1995.

[192] S. Zimmermann, P. Koumoutsakos, and W. Kinzelbach. Simulation of pollutant

transport using a particle method. J. Comput. Phys., 173:322–347, 2001.

Own Publications

Parts of this thesis have been published in the following papers

Refereed Journal Papers

1. S. E. Hieber, J. H. Walther, and P. Koumoutsakos. Remeshed smoothed particle

hydrodynamics simulation of the mechanical behavior of human organs. J. Tech-

nology and Health Care, 12(4):305–314, 2004.

2. Simone Elke Hieber and Petros Koumoutsakos. A Lagrangian particle level set

method. J. Comput. Phys., 210:342–367, 2005.

3. I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and

P. Koumoutsakos. PPM – a highly efficient parallel particle-mesh library for the

simulation of continuum systems. J. Comput. Phys., 215:566–588, 2006.

Refereed Conference Papers

1. I. F. Sbalzarini, J. H. Walther, B. Polasek, P. Chatelain, M. Bergdorf, S. E. Hieber,

E. M. Kotsalis, and P. Koumoutsakos. A software framework for portable paral-

lelization of particle-mesh simulations. Lect. Notes Comput. Sc., 4128:730–739,

2006.

Curriculum Vitae

Name Simone Elke Hieber

Citizen of Germany

Born February 19th, 1976, Geislingen/Steige, Germany

July 1995 Abitur (High school leaving certificate)

Geislingen/Steige, Germany

1995 - 2001 University of Stuttgart, Germany

Major: Engineering Cybernetics

1999 - 2001 Michigan Technological University, Houghton, MI, USA

Major: Applied Mathematics

May 2001 Master of Science in Mathematics

Michigan Technological University, Houghton, MI, USA

Oct 2001 Diploma in Engineering Cybernetics

University of Stuttgart, Germany

2002 - 2006 Swiss Federal Institute of Technology, ETH Zurich

Research and teaching assistant

Institute of Computational Science (ICoS)

