The Listings Package

Copyright 1996—-2000
Carsten Heinz <cheinz@gmx.de>

2000/08/23 Version 0.21

Abstract

The listings package is a source code printer for W'TEX. You can typeset
stand alone files as well as listings with an environment similar to verbatim
as well as you can print code snippets using a command similar to \verb.
Many parameters control the output and if your preferred programming
language isn’t already supported, you can make your own definition.

User’s guide
1 Getting started

1.1
1.2
1.3
14
1.5

A minimal file.
Typesetting listings
Figure out the appearance . .
Seduce to use
Alternatives

2 The next steps

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Software license
Installation
Package loading
The “key=value” interface . .
Languages and styles
Special characters
Line numbers
Layout elements
Emphasize identifiers
Listing alignment
Fixed and flexible columns
Indexing
Closing and credits

3 Tips and tricks

3.1
3.2
3.3
34
3.5

Troubleshooting
National characters.
Listings with graphics
Bold typewriter fonts.
How to

Reference guide

3

21

4 Main reference

4.1 Datatypes
4.2 Languages and styles
4.3 Typesetting listings
4.4 Figure out the appearance . .
45 Frames.
4.6 Captions.
47 Labels
4.8 Indexing
4.9 Line shape and breaking . . .

4.10 Column alignment
4.11 Escaping to IMTEX
4.12 Interface to fancyvrb
4.13 Environments
4.14 Language specific keys
4.15 Language definitions

5 Experimental features

5.1 Listings inside arguments

5.2 Export of identifiers
5.3 Hyper references
5.4 Literate programming
5.5 LGrind definitions
5.6 Automatic formatting

6 Forthcoming

27
27
28
29
30
31
33
34
35
35
37
38
39
40
41
41

44
44
45
46
46
47
47

48

Preface

Trademarks Trademarks appear throughout this documentation without any
trademark symbol. So you can’t assume that names are free. There is no intention
of infringement; the usage is to the benefit of the trademark owner.

Reading this manual If you are experienced with the listings package, you
should read the paragraph “News and changes” below. Otherwise read section
1 Getting started step by step and then go on with section 2.

Please note: In this release I haven’t cared much about the reference guide. So
some information might be old.

News and changes The features ‘breaklines’ and ‘index’ aren’t experimental
any longer. Both’s functionality have been extended (but I removed some indexing
keys which are now obsolete). ‘emph’ is new and a collection of keyword classes.
Its introduction should solve all highlighting problems: you can specify hundreds
of different identifier lists and styles—if TEX’s memory suffices.

I’ve added the experimental features ‘hyper’ (references) and ‘Igrind’ (language
definitions), and some other keys labelled as new as usual. The user’s guide has
been totally rewritten, but neither the developer’s guide nor the documentation
of implementation is up-to-date.

The commands and keys \lststorekeywords, pre, post, \lstname and
\1lstintname have been removed. They are obsolete since version 0.20. But I
plan to reintroduce some funtionality via everydisplay and everytext, which
are undefined yet.

Thanks There are many people I have to thank for fruitful communication,
posting their ideas, giving error reports, adding programming languages to
lstdrvrs.dtx, and so on. Their names are listed in section 2.13 .

User’s guide

1 Getting started

1.1 A minimal file

Before using the listings package, you should be familiar with the IATEX typesetting
system. You need not to be an expert. Here is a minimal file for listings.

\documentclass{article}
\usepackage{listings}

\begin{document}

\1stset{language=Pascal}}, activate Pascal
% Examples can be inserted here.

\end{document}

Now type in this first example and run it through BTEX.

— Must | do that really? Yes and no. Some books about programming say this is good.
What a mistake! Typing takes time—wasted if the code is clear to you. And if you need that
time to understand what is going on, the author of the book should reconsider the concept of
presenting the crucial things—you might want to say that about this guide even—or you're
simply unexperienced with programming. If only the latter case applies, you should spend
more time on reading (good) books about programming, (good) documentations, and (good)
source code from other people. Of course you should also make your own experiments. You
will learn a lot. However, running the example through KTEX shows whether the listings
package is installed.

— The example doesn’t work. Are the two packages listings and keyval installed on your
system? Read section 2.2 on the installation process. If this doesn’t help, you should consult
your system administrator and/or the local TEX and BTEX guides.

— Should | read the software license before using this package? Yes, but read this Getting
started section first to decide whether you are willing to use this package.

1.2 Typesetting listings

Three types of source codes are supported: code snippets inside paragraphs and
code segments or listings of stand alone files as separate paragraphs. The difference
between inside and separate paragraph is the same as between text style and
display style formulas.

Code snippets The well-known IATEX command \verb typesets code snippets
verbatim. The new command \lstinline pretty-prints the code, for example
‘var i:integer;’ is typeset by ‘\1stinline!var i:integer;!’. The exclamation
marks delimit the code and can be replaced by any character not in the code,
i.e. \1stinline$var i:integer;$ gives the same result.

— Don’t even try the code as an argument: ‘\lstinline{var i:integer;}' will not work.

Displayed code The 1lstlisting environment typesets the enclosed source
code. Like most examples, the following one shows verbatim IATEX code on the
right and the result on the left. You might take the right-hand side, put it into
the minimal file, and run it through IBTEX.

\begin{lstlisting}{}

for i:=maxint to 0 do for i:=maxint to 0 do
begin begin
{ do nothing } { do nothing }
end; end;
Write(’Case._insensitive._’); Write(’Case insensitive ’);
WritE(’Pascal_keywords.’); WritE(’Pascal keywords.’);
\end{1lstlisting}

It can’t be easier.

— That’s not true. The name ‘listing’ is be shorter. Indeed. But other packages already
define environments with that name. To be compatible with such packages, all commands
and environments of the listings package use the prefix ‘1st’.

— Okay, but it’s still not true. The environment takes an argument and all these arguments on
the next few pages are empty. It's a name argument and has something to do with line
numbers.

— | see—I've read the section about line numbers. Wouldn't it be easier to define another
environment for that purpose? No, no, no. Never do that again! Read this Getting
started section from the beginning to the end. However, here is an answer to your question:
No, it's a matter of taste.

The environment provides an optional argument. It tells the package to perform
special tasks, for example, to print only the lines 2-5:

\begin{lstlisting}[first=2,last=5]{}
for i:=maxint to 0 do
begin
begin { do nothing }
{ do nothing } end;

end;

Write(’Case insensitive ’);
WritE(’Pascal keywords.’);
\end{1lstlisting}

— Hold on! I've several questions. Where comes the frame from and what is it good for?

You can put frames around all listings except code fragments. You will learn it later. The
frame shows that empty lines at the end of listings aren’t printed. This is line 5 in the example.

— Hey, you can’t drop my empty lines! You can tell the package not to drop them: The key
‘showlines’ controls these empty lines and is described in section 4.3. Warning: First read
ahead on how to use keys in general.

— | get obscure error messages when using ‘first’. That shouldn’t happen. Make a bug
report as described in section 3.1 Troubleshooting.

Stand alone files Finally we come to \lstinputlisting, the command to
pretty-print stand alone files. It has one optional and one file name argument.
Note that you possibly need to specify the (relative) path to the file. Here now
the result is printed below the verbatim code since both together don’t fit the text
width.

\1lstinputlisting [last=4]{1listings.sty}

%%

%% This is file ‘listings.sty’,

%% generated with the docstrip utility.
%%

— The spacing is different in this example. Yes. The two previous examples have aligned
columns, i.e. columns with identical numbers have the same horizontal position—this package
makes small adjustments only. The columns in the example here are not aligned. It is the
effect of three parameters, which are explained later (keyword: flexible column format).

Now you know all pretty-printing commands and environments. It remains
to learn the parameters which control the work of the listings package. This is,
however, the main problem. Here are some of them.

1.3 Figure out the appearance

Keywords are typeset bold, comments in italic shape, and spaces in strings appear
as .. You don’t like these settings? Look at this:

\1lstset{/ general command to set parameter(s)
basicstyle=\small, % print whole listing small
keywordstyle=\color{red}\bfseries\underbar,

underlined bold red keywords

identifierstyle=, nothing happens

commentstyle=\color{white}, % white comments

=N =

stringstyle=\ttfamily, % typewriter type for strings
stringspaces=false} % no special string spaces
\begin{lstlisting}{}
for i:=maxint to 0 do for i:=maxint to 0 do
begin begin
{ do nothing }
end; end;
Write(’Case insensitive ’); Write(’Case insensitive ’);
WritE (*Pascal keywords.’); WritE(’Pascal keywords.’);
\end{1lstlisting}

— You've requested white coloured comments, but | can see the comment on the left side.
There are a couple of possible reasons: (1) You've printed the documentation on nonwhite
paper. (2) If you are viewing this documentation as a .dvi-file, your viewer seems to have
problems with colour specials. Try to print the page on white paper. (3) If a printout on
white paper shows the comment, the colour specials aren't suitable for your printer or printer
driver. Recreate the documentation and try it again—and ensure that the color package is
well-configured.

The styles use two different kinds of commands. \ttfamily and \bfseries both
take no arguments and \underbar underlines the argument following up. In gen-
eral, the very last command might read exactly one argument, namely some
material the package typesets. There’s one exception. The last command of
basicstyle must not read following tokens—or you will get deep in trouble.
— ‘basicstyle=\small’ looks fine, but comments look really bad with ‘commentstyle=\small’
and empty basic style. The package adjusts internal data after selecting the basic style at
the beginning of each listing. This can be a problem if you change the font size for comments

or strings, for example. In this case you might want to use ‘fontadjust=true’ to update the
internal data every font selection. Don’t use this parameter otherwise!

Warning You should be very careful with striking styles; the last example is
rather moderate—it can get horrible. Always use decent highlighting. Unfortu-
nately it is difficult to give more recommendations since they depend on the type
of document you're creating. Slides or other presentations often require more
striking styles than books, for example. In the end, it’s you who have to find the
golden mean!

Listing 1: A floating example

for i:=maxint to 0 do
begin

{ do nothing }
end;

Write(’Case_insensitive_’);
WritE("Pascal_keywords.’);

1.4 Seduce to use

You know all pretty-printing commands and some main parameters. Here now
comes a small and incomplete overview of other features. The table of contents
also provides information.

Line numbers Apart from code fragments you can get numbered code lines,
e.g. tiny numbers, each second line, with 5pt distance to the listing:

\lstset{labelstyle=\tiny, labelstep=2, labelsep=5ptl}/ ===

\begin{lstlisting}{}
for i:=maxint to 0 do for i:=maxint to 0 do
> begin begin
{ do nothing } { do nothing }
4 end; end;
¢ Write(’Case_insensitive.’); Write(’Case insensitive ’);
WritE(’Pascal_keywords.’); WritE(’Pascal keywords.’);
\end{1lstlisting}
— | can’t get rid of line numbers in subsequent listings. ‘labelstep=0’ turns them off.
— Can | use these parameters in the optional arguments? Of course. Note that optional

arguments modify values for one particular listing only, i.e. you change the appearance, step
or distance of line numbers for a single listing. The previous values are restored afterwards.

The 1stlisting environment allows you to interrupt your listings: you can end a
listing and continue it later with the correct line number even if there are listings
in between. Read section 2.7 for a thorough discussion.

Floating listings Program listings except code fragments may float:

\begin{lstlisting}[float,caption=A floating example]{}
for i:=maxint to 0 do
begin
{ do nothing }
end;

Write(’Case insensitive ’);
WritE(’Pascal keywords.’);
\end{1lstlisting}

Don’t care about the parameter caption now. And if you put the example into
the minimal file and run it through IATEX, please don’t wonder: you’ll miss the
horizontal rules since they are described elsewhere.

— WTEX’s float mechanism allows to determine the placement of floats. What's about that?
You can write ‘float=tp’, for example.

Other features There are still features not mentioned so far: automatic break-
ing of long lines, the possibility to use ATEX code in listings, automated indexing,
or personal language definitions. One more little teaser? Here you are. But note
that the result is not produced by the ATEX code on the right alone. The main
parameter is hidden.

\begin{lstlisting}{}
if (i<0) then i «1; if (i<=0) then i := 1;
if (i>0) then i «0; if (i>=0) then i :=0;
if (i#0) then i «0; if (i<>0) then i := 0;

\end{1lstlisting}

You’re not sure whether you should use listings? Read the next section.

1.5 Alternatives

This package is certainly not the final utility for typesetting source code. Other
programs do their job very well—if you are not satisfied with listings. Some are
independent of IXTEX, other come as separate program plus BTEX package, and
other more are packages which don’t pretty-print the source code. The second
type inlcudes converters, cross compilers, and preprocessors. Such programs create
ITEX files you can use in your document or stand alone ready-to-run IATEX files.

Note that I'm not dealing with any literate programming tool here, which could
also be an alternative. However, you should have heard of the WEB system, the tool
Prof. Donald E. Knuth developed and made use of to document and implement
TEX.
a2ps started as ‘ASCII to PostScript’ converter, but today you can invoke the
program with ——pretty-print=(language) option. If your favourite programming
language is not already supported, you can write your own so-called style sheet.
You can request line numbers, borders, headers, multiple pages per sheet, and
many more. You can even print symbols like V or a instead of their verbose forms.
If you just want program listings and not a document with some listings, this is
the best choice.

Visit the home page at www-inf.enst.fr/~demaille/a2ps.

cvt2ltx is a family of ‘source code to NTEX’ converters for C, Objective C, C++,
IDL and Perl. Other programming languages can be added, but currently it isn’t
documented how this is done.

Available via ftp from axp3.sr.fh-mannheim.de/cvt2latex.

LGrind is a cross compiler and comes with many predefined programming lan-
guages. For example, you can put the code on the right in your document, invoke
LGrind with -e option (and file names), and run the created file through XTEX.
You should get a result similar to the left-hand side.

AR
for i:=maxint to 0 do
begin

{ do nothing }
end;

for i:=maxint to 0 do
begin
{ do nothing }

end;

Write(’Case insensitive ’);
WritE(’Pascal keywords.’);
%]

If you use %(and %) instead of %[and %], you get a code snippet instead of a
displayed listing. Line numbers to the left or right, arbitrary I*TEX code in the
source code, printing symbols instead of verbose names, font setup, and more is
supported. You will (have to) like it (if you don’t like listings).

Available via ftp from CTAN/support/lgrind.

Write(’Case insensitive ’);
WritE(’Pascal keywords.’);

C++2BTEX is a C/C++ to IATEX converter. You can specify the fonts for com-
ments, directives, keywords, and strings, or the size of a tabulator.
Available via ftp from CTAN/support/C++2LaTeX-1 1pll.

SKTEX is a pretty-printing Scheme program (invokes IATEX automatically) espe-

cially designed for Scheme and other Lisp dialects. It supports stand alone files,

text and display listings, and you can even nest the commands/environments if

you use BTREX code in comments, for example. Keywords, constants, variables,

and symbols are definable and use of different styles is possible. No line numbers.
Available via ftp from CTAN /support/slatex.

tiny_c2ltx is a C/C++ to BTEX converter based on cvt2ltx (or the other way
round?). It supports block comments, A'TEX code in/as comments, and smart
line breaking. The package does not provide line numbers. Font selection and
tabulators are hard-coded, i.e. you have to rebuild the program if you want to
change the appearance.

Available via ftp from CTAN /support/tiny_c2l.

listing —mnote the missing s—is not a pretty-printer and the aphorism about
documentation at the end of 1listing.styisnot true. It defines \1istoflistings
and a nonfloating environment for listings. All font selection and indention must
be done by hand. However, it’s useful if you have another tool doing that work,
e.g. LGrind.

Available via ftp from CTAN/macros/latex/contrib/other/misc.

alg provides essentially the same functionality as algorithms. So read the next
paragraph and note that the syntax will be different.
Available via ftp from CTAN/macros/latex/contrib/other/alg.

algorithms goes a quite different way. You describe an algorithm and the package
formats it, for example

if + <0 then \begin{algorithmic}
i1 \IF{$i\leq0$}
else \STATE $i\getsi$
if 1 > 0 then \ELSE\IF{$i\geq0$}
i 0 \STATE $i\getsO$
end if \ENDIF\ENDIF
end if \end{algorithmic}

As this example shows, you get a good looking algorithm even from a bad looking
input. The package provides a lot more constructs like for-loops, while-loops, or
comments. You can request line numbers, ‘ruled’, ‘boxed’ and floating algorithms,
a list of algorithms, and you can customize the terms if, then, and so on.
Available via ftp from CTAN/macros/latex/contrib/supported/algorithms.

pretprin is a package for pretty-printing texts in formal languages—as the title in
TUGboat, Volume 19 (1998), No. 3 states. It provides environments which pretty-
print and format the source code. Analyzers for Pascal and Prolog are defined;
adding other languages is easy—if you are or get a bit familiar with automatons
and formal languages.

alltt defines an environment similar to verbatim except that \, { and } have
their usual meanings. This means that you can use commands in the verbatims,
e.g. select different fonts or enter math mode.

This package is part of the ATEX base distribution.

moreverb requires verbatim and provides verbatim output to a file, ‘boxed’ ver-
batims and line numbers.
Available via ftp from CTAN/macros/latex/contrib/supported/moreverb.

verbatim defines an improved version of the standard verbatim environment
and a command to input files verbatim.
Available via ftp from CTAN/macros/latex/required/tools.

fancyvrb is, roughly spoken, a super set of alltt, moreverb, and verbatim, but
many more parameters control the output. The package provides frames, line
numbers on the left or on the right, automatic line breaking (difficult), and more.
For example, an interface to listings exists, i.e. you can pretty-print source code
automatically. The package fvrb-ex builds above fancyvrb and defines environments
to present examples similar to the ones in this guide.

Available via ftp from CTAN/macros/latex/contrib/supported/fancyvrb.

— Why do you list all these alternatives? Well, it's always good to know the competitors.
And trying a different package and coming back is better than the other way round.

2 The next steps

2.1 Software license

The files listings.dtx and 1listings.ins and all files generated from only these
two files are referred to as ‘the listings package’ or simply ‘the package’. A ‘driver’
is generated from lstdrvrs.dtx.

Copyright The listings package is copyright 1996-2000 Carsten Heinz. The
drivers are copyright 1997/1998/1999/2000 any individual author listed in the
driver files.

Distribution and warranty The listings package as well as 1stdrvrs.dtx and
all drivers are distributed under the terms of the IATEX Project Public License
from CTAN archives in directory macros/latex/base/lppl.txt, either version
1.0 or any later version.

Use of the package The listings package is free software. However, if you
distribute the package as part of a commercial product or if you use the package to
prepare a commercial document (books, journals, and so on), I'd like to encourage
you to make a donation to the IATEX3 fund. The size of this ‘license fee’ should
depend on the value of the package for your product. For more information about
ATEX3 see http://www.latex-project.org.

If you use the package to typeset a commercial or non-commercial document,
please send me a copy of the document (.dvi, .ps, .pdf, hardcopy, etc.) to
support further development.

Modification advice Permission is granted to modify the listings package as
well as 1stdrvrs.dtx. You are not allowed to distribute any changed version
of the package or any changed version of 1stdrvrs.dtx, neither under the same
name nor under a different one. Instead contact the address below. Other users
will welcome removed bugs, new features, and additional programming languages.

Contacts Send your comments, ideas, bug reports and additional programming
languages to Carsten Heinz, Tellweg 6, 42275 Wuppertal, Germany or preferably
to cheinz@gmx.de using listings in the subject.

Mailing list This is mainly an announcement list regarding new versions, bugs,
patches, and work-arounds. So I recommend it for system administrators, main-
tainers of WTEX installations, or people who absolutely need the latest bugs. To
join the list, send an email to cheinz@gmx.de with subject subscribe listings.

2.2 Installation

Software installation

1. Following the TEX directory structure (TDS), you should put the files of the
listings package into directories as follows:

listings.dvi — texmf/doc/latex/listings
listings.dtx, listings.ins,
lstdrvrs.dtx, lstpatch.sty — texmf/source/latex/listings

Note that you possibly don’t have a patch file 1stpatch.sty. If you don’t
use the TDS, simply adjust the directories below.

2. Create the directory texmf/tex/latex/listings or remove all files except
1st(whatever)0.sty and lstlocal.cfg from that directory.

3. Change the working directory to texmf/source/latex/listings and run
listings.ins through TEX.

4. Move the generated files to texmf /tex/latex/listings if this is not already

done.
listings.sty, lstmisc.sty, (kernel and add-ons)
listings.cfg, (configuration file)
1stlang(number).sty, (language drivers)
lstpatch.sty — texmf/tex/latex/listings

5. If your TgX implementation uses a file name database, update it.

10

6. If you receive a patch file later on, put it where 1istings.styis (and update
file name database).

Note that listings requires at least version 1.10 of the keyval package included
in the graphics bundle by David Carlisle. This bundle is available via ftp from
CTAN /macros/latex/required /graphics.

Software configuration Read this only if you encounter problems with the
standard configuration or if you want the package to suit foreign languages, for
example.

Never modify a file from the listings package, in particular not the configuration
file. Each new installation or new version overwrites it. The software license allows
modification, but I can’t recommend it. Tt’s better to create one or more of the
files

1stmiscO.sty for local add-ons (see developer’s guide),
1stlang0.sty for local language definitions (see 4.15), and
lstlocal.cfg as local configuration file

and put it/them to the other listings files. These three files are not touched by
a new installation except you remove them. If 1stlocal.cfg exists, it is loaded
after listings.cfg. You might want to change one of the following parameters.

data \lstaspectfiles contains l1stmiscO.sty,lstmisc.sty

data \1lstlanguagefiles contains 1stlang0.sty,lstlangl.sty,lstlang2.sty,lstlang3.sty
The package uses the specified files to find language definitions and add-ons
(= aspects).

— What does the label “data” mean? It indicates that the definition isn’t a usual command.
If you want to adjust this parameter, you have to redefine it via ‘\renewcommand’. For example,
after ‘\renewcommand\lstaspectfiles{}' the package won't find required add-ons. Note that
such redefinitions must not take any arguments!
data \lstlistlistingname contains Listings

The header name for the list of listings.

data \1lstlistingname contains Listing

It’s the string used to label the caption.

defaultdialect=[{dialect)] (language)

defines (dialect) as default dialect for (language). This dialect will be used
for (language) if no dialect is given explicitly. Table 1 shows all predefined
languages and dialects.

— ‘defaultdialect’ isn't a command. How can | use it? Remember the parameters in
section 1.3: take the name plus equality sign plus value and use this as argument to ‘\lstset’.
If you separate such “key—=value”s by commas, you can set two or more default dialects with
a single command. The standard configuration file ‘listings.cfg’ serves as example.

\1stalias{(alias)}{{language)}

defines an alias for a programming language. Each {(alias) dialect is redi-
rected to the same dialect of {language). It’s also possible to define an alias
for one particular dialect only:

11

\1stalias[{alias dialect)]1{{alias)} [{dialect)]{{language)?}

Here all four parameters are nonoptional and an alias with empty (dialect)
will select the default dialect. Note that aliases can’t be nested: the two
aliases ‘\lstalias{fool}{foo2} and ‘\lstalias{foo2}{foo3} redirect
fool not to foo3.

2.3 Package loading

As usual in WTEX, the package is loaded by \usepackage [{options)]1{1istings},
where [{options)] is optional and gives a comma separated list of options. Each
option loads an additional listings aspect (collection of commands and parameters).
Usually you don’t have to take care of such aspect loading. But in some cases it
could be necessary: if you want to compile documents created with an earlier
version of this package or if you use very special features.

0.19

to compile documents created with version 0.19. This should be fully com-
patible except that the command \1ststorekeywords doesn’t exist. In fact,
one should write “This is going to be . .. in some later version” since I haven’t
cared much about the compatibility mode.

sSavemem

tries to save some of TEX’s memory. If you switch between languages often,
it could also reduce compile time. But all this depends on the particular
document and its listings.

procnames

defines the keys of this experimental aspect, see 5.2.

hyper
defines keys for hyper referencing with hyperref, see 5.3.

lgrind
defines the lgrindef key, see 5.5.

After package loading I recommend to load all used dialects of programming
languages with the following command. It is faster to load several languages with
one command than loading each language on demand.
\1lstloadlanguages{(comma separated list of languages)}

loads all specified languages. Each programming language is given in the
form [{dialect)](language). Without the optional [{dialect)] the package
loads a default dialect. So write ‘[Visual]C++’ if you want Visual C++ and
‘[ANSI]C++’ for ANSI C++.

After or even before language loading, you might want to define default dialects—
just to be independent of configurations files.

12

2.4 The “key=value” interface

This package uses the keyval package from the graphics bundle by David Carlisle.

Each parameter is controlled by an associated key and a user supplied value. For

example, first is a key and 2 a valid value for this key. The command \1stset

gets a comma separated list of “key=value” pairs. The first list with more than a
single entry is on page 4: first=2,last=b.

— So | can write ‘\1stset{first=2,last=5}" once for all? No. ‘first’ and ‘last’ belong

to a small set of keys which are used on individual listings. However, your command is not

illegal—it has no effect. You have to use these keys inside the optional argument of the
environment or input command.

— What’s about a better example of a key=value list? There is one in section 1.3.
— ‘language=[77]Fortran’ does not work inside an optional argument. You must put

braces around the value if a value with optional argument is used inside an optional argument.
In the case here write ‘language={[77]Fortran}’ to select Fortran 77.

— If | use the ‘language’ key inside an optional argument, the language isn’t active when |
typeset the next listing. All parameters set via ‘\lstset’ keep their values up to the
end of the current environment or group. Afterwards the previous values are restored. The
optional parameters of the two pretty-printing commands and the ‘1stlisting’ environment
take effect on the particular listing only, i.e. values are restored immediately. For example, you
can select a main language and change it for special listings.

— \1lstinline has an optional argument? Yes. And from this fact comes a limitation:
you can't use the left bracket ‘[’ as delimiter except you specify at least an empty optional
argument as in ‘\lstinline[] [var i:integer;[’. If you forget this, you will either get a
“runaway argument” error from TgX, or an error message from the keyval package.

2.5 Languages and styles

You already know that the key language activates programming languages—at
least Pascal. The key provides an optional parameter to select particular dialects
= versions or implementations of a language: language=[(dialect)]{language).
language=[77]Fortran selects Fortran 77 and language=[XSC]Pascal does the
same for Pascal XSC. Table 1 shows all predefined languages and dialects. Use the
names as (language) and (dialect), respectively. After language={} as argument
to \lstset or as optional argument, no keywords are detected, no comments, no
strings, and so on.

Each underlined dialect in the table is default dialect; it is selected if you leave
out the optional argument. But note that predefined default dialects might change:
it’s either a standard dialect or the newest version. Moreover, a local configuration
file can also change settings. Thus: If you make use of default dialects, define them
in your document.

— | have C code mixed with assembler lines. Can listings pretty-print such source code, i.e. high-
light keywords and comments of both languages? ‘alsolanguage=[(dialect)]{language)’
selects a language additionally to the active one. So you only have to write a language defi-
nition for your assembler dialect, which doesn’t interfere with the definition of C, say.

— Where should | put my language definition? If you need the language for one partic-
ular document, put it into the preamble of that document. Otherwise create the local file
‘1stlang0.sty’ or add the definition to that file, but use ‘\1st@definelanguage’ instead of
‘\1stdefinelanguage’. However, you might want to send the definition to the address in
section 2.1. Then it will be published under the IATEX Project Public License.

It’s obvious that a pretty-printing tool requires some kind of language se-
lection and definition. And it is very convenient to have the same for printing

13

Table 1: Predefined languages

Ada (83,95) Algol (60,68)

C (ANSI,Objective) C++ (ANSI,Visual)
Caml (light,Objective) Clean

Cobol (1974,1985,ibm) Comal 80

csh Delphi

Eiffel Elan

Euphoria Fortran (77,90,95)
Haskell HTML

IDL (empty,CORBA) Java

Lisp Logo

make (empty,gnu) Mathematica (1.0,3.0)
Matlab Mercury

Miranda ML

Modula-2 Oberon-2

OCL (decorative,0MG) Pascal (Borland6,Standard,XSC)
Perl PL/I

POV Prolog

Python SHELXL

Simula (67,CII,DEC,IBM) SQL

TeX (AlLaTeX,common,LaTeX,plainprimitive)
VBSecript VHDL

styles: \1stdefinestyle{(style name)}{(key=value list)} stores a key=value list
and the key style=(style name) activates it. For example, you could write

\1lstdefinestyle{number}

{labelstep=1, labelstyle=\tiny, labelsep=10pt}
\1lstdefinestyle{nonumber}

{labelstep=03}

and switch from listings with line numbers (style=number) to listings without ones
(style=nonumber). The advantage: styles at a central place of your document can
be modified easily and the changes take effect on all listings.

Eventually note that the arguments (style name), {language) and (dialect) are
case insensitive and that spaces have no effect.

2.6 Special characters

Tabulators You might get unexpected output if your sources contain tabulators.
The package assumes tabulator stops at columns 9, 17, 25, 33, and so on. This is
predefined via tabsize=8. If you change the eight to the number n, you will get
tabulator stops at columns n + 1,2n + 1,3n + 1, and so on.

14

\1lstset{tabsize=2}

\begin{lstlisting}{}
123456789 123456789
{ one tabulator } { one tabulator }
{ two tabs } { two tabs }
123 { 123 + two tabs } 1923 { 123 + two tabs }
\end{1lstlisting}

The left-hand side uses tabsize=2 but the verbatim code tabsize=4. Note that
\1lstset modifies the values for all following listings in the same environment
or group. If you want to change settings for a single listing, use the optional
argument.

Read also the paragraph about visible tabulators below.

Form feeds Another special character is a form feed causing an empty line by
default. formfeed=\newpage would result in a new page every form feed. Please
note that such definitions (even the default) might get in conflict with frames.

National characters If you type in such characters (of code 128-255) directly
and use these characters also in listings, let the package know it—or you’ll get
really funny results. extendedchars=true allows and extendedchars=false pro-
hibits extended characters in listings. If you use them, you should load fontenc,
inputenc or any other package which defines the characters.

— | have problems using inputenc together with listings. This could be a compatibility
problem. Make a bug report as described in section 3.1 Troubleshooting.

The extended characters don’t cover Arabic, Chinese, Hebrew, Japanese, and so
on. Read section 3.2 for details on work-arounds.

How to gobble characters To make your IATEX code more readable, you
might want to indent your 1stlisting listings. This indention must be removed
for pretty-printing. If you indent each code line by three characters, you can
remove them via gobble=3:

\begin{lstlisting}[gobble=31{}

for i:=maxint to 0 do 1yuforyii=maxint,to,0udo
begin u2ubegin
{ do nothing } uuduuuu{udoynothing, }
end; 123end;
Write(’Case._insensitive._’); uuuWrite (’ Caseinsensitive,’);
WritE ("Pascal _keywords.’); LuUWritE (’ Pascal keywords.’);
\end{1lstlisting}

Note that empty lines as well as the beginning and the end of the environment
need not to respect the indention. But never indent the end by more than ‘gobble’
characters. Moreover note that tabulators expand to tabsize spaces before we
gobble.

— Could | use ‘gobble’ together with ‘\1stinputlisting'? Yes, but it has no effect.

Visible tabulators and spaces The verbatim part of the last example shows
all spaces explicitly. This is also possible with tabulators.

15

\1lstset{visiblespaces=true,) <===
visibletabs=true, ¥ <===
tab=\rightarrowfill}), <===

uuuuforu.i:=maxintutou0udo \begin{1lstlisting}{}
cocbegin for i:=maxint to 0 do
——{_do_nothing_} begin
cwend; { do nothing }
end;
\end{1lstlisting}

If you request visiblespaces but no visibletabs, tabulators are converted
to visible spaces. The default definition of tab produces a ‘wide visible space’
. S0 you might want to use \to, \dashv or something else instead.

— Some sort of advice: (1) You should really indent lines of source code to make listings more
readable. (2) Don't indent some lines with spaces and others via tabulators. Changing the
tabulator size (of your editor or pretty-printing tool) completely disturbs the columns. (3) As
a consequence, never share your files with differently tab sized people!

2.7 Line numbers

You already know the keys labelstyle, labelstep, and labelsep from section
1.4. Here now we begin with continued listings. Remember that the 1stlisting
environment has a name argument. Listings with identical names (case sensitive!)
have a common line counter.
\begin{lstlisting}{Test}/ ===
for i:=maxint to 0 do

for i:=maxint to 0 do begin
2 begin { do nothing }
{ do nothing } end;
4+ end;
i o \end{1lstlisting}
And we continue the listing: And ve continne the listing:
¢ Write(’Case_insensitive._’); \begin{lstlisting}{Test}) <===
WritE(’Pascal_keywords.”); Write(’Case insensitive ’);
WritE (’Pascal keywords.’);
\end{1lstlisting}

The next Test listing goes on with line number 8, no matter whether there are
other listings in between. Note that the empty line at the end of the first part is
not printed here, but it counts for line numbering. The continue mechanism has
two exceptions: an empty named (= {}) listing always starts with line number 1,
a space named (= { }) listing continues the last empty or space named one.

In fact, that’s not true. The key firstlabel controls the line number of the
first printed line:

16

\begin{lstlisting}[firstlabel=2]{}
for i:=maxint to 0 do

2 for i:=maxint to 0 do begin
begin { do nothing }
4 { do nothing } end;
end;
. o \end{1lstlisting}
And we continue the listing: And we continue the listing:
Write(’Case_insensitive.’); \begin{lstlisting}[firstlabel=1]1{ }
2 WritE(’Pascal_keywords.’); Write(’Case insensitive ’);
WritE(’Pascal keywords.’);
\end{1lstlisting}
— Okay. And how can | get decreasing line numbers? Sorry, what? Decreasing line
numbers as on page 34. May | suggest to demonstrate your individuality by other means?

If you differ, you should try a negative ‘labelstep’ (together with ‘firstlabel’).

Read section 3.5 on how to reference line numbers.

2.8 Layout elements

It’s always a good idea to structure the layout by vertical space, horizontal lines,
or different type sizes and typefaces. The best to stress whole listings are—mnot all
at once—colours, frames, vertical space, and captions. The latter are also good to
refer to listings, of course.

Vertical space The keys aboveskip and belowskip control the vertical space
above and below displayed listings. Both keys get a dimension or skip as value
and are initialized to \medskipamount.

Captions Now we come to caption and label. You might guess that they can
be used in the same manner as IATEX’s \caption and \label commands:

\begin{lstlisting}[caption=Useless code,label=useless]{}
for i:=maxint to 0 do
begin
{ do nothing }
end;
\end{1lstlisting}

Listing 2: Useless code

for i:=maxint to 0 do
begin
{ do nothing }

end;

Afterwards you could refer to the listing via \ref{useless}. The optional argu-
ment of caption can be used to specify a short caption for the list of listings. If
this short caption is empty then the listing will neither appear in that list nor it
gets a number. But hold on. You’ve got to be aware that the key is used on an
individual listing. Therefore you can’t type caption=[short]long since the right
bracket after short ends the optional argument of the pretty-printing command.
It works if you enclose the whole value in braces: caption={[short]long}. By
the way: the list of listings is printed via \1stlistoflistings.

If you want to drop the label Listing and the number, you should use title:

17

\begin{lstlisting}[frame=tb,title=‘Caption’ without labell{}
for i:=maxint to 0 do
begin
{ do nothing }
end;
\end{1lstlisting}

‘Caption’ without label

for i:=maxint to 0 do
begin

{ do nothing }
end;

Frames The main key for frames is frame. If you use any subset of trbl as
value, you get rules at the top, right, bottom, and/or left. Upper case letters will
draw double rules.

\begin{lstlisting}[frame=trBL]{}

for i:=maxint to 0 do for i:=maxint to O do
begin begin
{ do nothing } { do nothing }
end; end;
\end{1lstlisting}
— The rules aren’t aligned. This could be a bug of this package or a problem with your .dvi

driver. Before sending a bug report to the package author, modify the parameters described in
section 4.5 heavily. And do this step by step! For example, begin with ‘framerulewidth=10mm’.
If the rules are misaligned by the same (small) amount as before, the problem does not come
from the rule width. So continue with the next parameter.

Note that a corner is drawn if and only if both adjacent rules are requested. You
might think that the lines should be drawn up to the edge. But what’s about
round corners? The key frameround must get exactly four characters as value.
The first character is attached to the upper right corner and it continues clockwise.
‘t’ as character makes the corresponding corner round.

\1lstset{frameround=fttt}
' \begin{lstlisting}[frame=trBL]{}
for i:=maxint to 0 do

for i:=maxint to 0 do
begin

{ do nothing }
end;

begin

{ do nothing }
end;
\end{1lstlisting}

Note that frameround has been used together with \1stset and thus the value
affects all following listings in the same group or environment. Since the listing is
inside a minipage here, this is no problem.

— Dont’ use frames all the time, in particular not with short listings. This would emphasize
nothing. Use frames for 10% or even less of your listings, for your most important ones.

— If you use frames on floating listings, do you really want frames? No, | want to separate
floats from text. Then it is better to redefine ATEX's ‘\topfigrule’ and ‘\botfigrule’.
For example, you could write ‘\renewcommand*\topfigrule{\hrule\kern-0.4pt\relax}’
and make the same definition for \botfigrule.

18

Colours One more element. You need the color package and can then request
coloured background via backgroundcolor=[{colour model)]{colour).

\definecolor{lightgray}{rgb}{0.75,0.75,0.75}
\1lstset{backgroundcolor=lightgray}

\begin{lstlisting}{}
for i:=maxint to 0 do for i:=maxint to 0 do
begin begin
j:=square(root(i)); j:=square (root(i));
end; end;
\end{1lstlisting}
— Great! | love colours. Fine, yes, really. And | like to remind you of the warning about

striking styles on page 5.

— | want coloured space around the whole listing and can’t get it, even not with the keys described
in section 2.10. Try frames with framerule and background colour being equal.

2.9 Emphasize identifiers

Recall the pretty-printing commands and environment. \1lstinline prints code
fragments, \lstinputlisting whole files, and 1stlisting prints pieces of code
which reside in the I*TEX file. And what are these different ‘types’ of source code
good for? Well, it just happens that a sentence contains a code fragment. Whole
files are typically included in or as an appendix. Nevertheless some books about
programming also include such listings in normal text sections—to increase the
number of pages. Nowadays source code should be shipped on disk or CD-ROM
and only the main header or interface files should be typeset for reference. So,
please, don’t misuse the listings package. Back to the topic.

Obviously ‘1stlisting source code’ isn’t used to make an executable program
from. Such source code has some kind of educational purpose or even didactic.

— What's the difference between educational and didactic? Something educational can be
good or bad, true or false. Didactic is true by definition.

Usually keywords are highlighted if the package typesets a piece of source code.
This isn’t necessary for readers knowing the programminglanguage well. The main
matter is the presentation of interface, library or other functions or variables. If
this is your concern, here come the right keys. Let’s say, you want to emphasize
the function names square and root, for example, by underlining them. Then
you could do it like this:

\1lstset{emph={square,root},
emphstyle=\underbar}

for i:=maxint to 0 do \begin{lstlisting}{}
begin for i:=maxint to O do
j=square(root(i)); begin
end; j:=square (root(i));
end;
\end{1lstlisting}

Note that the list of identifiers {square,root} is enclosed in braces. Otherwise
the keyval package would complain about an undefined key root since the comma
finishes the key=value pair. And before you ask your next question, here is the
answer: Yes, there is more than one emph ‘class’ and each class has its own style.

19

Both keys have an optional (class number) argument. Please note again: If
you use a list of identifiers or if you use an optional argument of a key inside an
optional argument of a pretty-printing command, you must put braces around
the value. Though it is not necessary, the following example uses these braces.
They are typically forgotten when they become necessary, after copy&paste or
extending a list of identifiers, for example.

\1stset{emph={square},emphstyle=\color{red},
emph={[2]root},emphstyle={[2]\color{blue}}}

\begin{lstlisting}{}
for i:=maxint to 0 do for i:=maxint to 0 do
begin begin
ji=square(root(i)); j:=square(root(i));
end; end;
\end{1lstlisting}
— What is the maximal (class number)? 231 —1 = 2147483 647. But TgX’s memory will

exceed before you can define so many different classes.

One final hint: Keep the lists of identifiers disjoint. Never use a keyword in
an ‘emphasize’ list or one name in two different lists. Even if your source code is
highlighted as expected, there is no guarantee that it is still the case if you change
the order of your listings or if you use the next release of this package.

2.10 Listing alignment

The examples are typeset with centered minipages. That’s the reason why you
can’t see that line numbers are printed in the margin. Now we separate the
minipage margin and the minipage by a vertical rule:

Some text before
Some text before

\begin{lstlisting}{}
for i:=maxint to 0 do for i:=maxint to O do
2 [begin begin
{ do nothing } { do nothing }
4 lend; end;
\end{1lstlisting}

The listing is lined up with the normal text. The parameter indent moves the
listing to the right (or left if the dimension is negative).

Some text before
\begin{lstlisting}[indent=15pt]1{}

Some text before
for i:=maxint to 0 do

for i:=maxint to 0 do begin
2 begin { do nothing }
{ do nothing } end;
4 end; \end{lstlisting}
'Write(Insensitive’); \begin{lstlisting}{ }
6 |WritE(’keywords.’); Write (’ Insensitive’);
WritE(’keywords.’);
\end{1lstlisting}

20

Note again that optional arguments change settings for single listings.

If you use environments like itemize or enumerate, there is ‘natural’ indention
coming from these environments. By default the listings package respects this. But
you might use wholeline=true (or false) to make your own decision. You can
use it together with indent, of course.

— | get heavy overfull \hboxes from some listings. This comes from long lines in your
listings. You have some options to get rid of the overful \hboxes. Firstly | recommend to
typeset listings in smaller fonts than the surrounding text, for example ‘basicstyle=\small’.
Secondly you might want to use the flexible column format. Thirdly you can ‘spread’ the line
width or set it explicitly, refer section 4.9. If all this doesn’t help, you might want to change
‘basewidth’, but be careful! The two unknown items are explained in the next section.

You might need to control the vertical position of listings with the boxpos key,
for example, if you use them in minipage or tabular environments. Here ‘listings’
means 1stlisting or \1stinputlisting. As the following example shows, you
can even place such listings inside paragraphs, but you must force the package to
do this by enclosing the listing in \hbox{ and }.

— Is it good form to use the TEX-primitive ‘\hbox’ in a IATEX document? No, it’s not. But
ATEX's ‘“\mbox' does not work in this example:

Here are some multi-line listings inside a paragraph.
The ‘boxpos’ key controls their vertical alignment:

\hbox{\begin{lstlisting}[boxpos=c]{} Y% <===
center

center

\end{1lstlisting}}

\hbox{\begin{lstlisting} [boxpos=b]{} h <===

bottom baseline

bottom baseline

\end{1lstlisting}}
\hbox{\begin{lstlisting}[boxpos=t]{} Y% <===
top baseline

top baseline

\end{1lstlisting}}

Here are some multi-line listings inside a paragraph. The ‘boxpos’ key controls their
bottom baseline

bottom baseline top baseline
top baseline

. . center
vertical alignment:
center

2.11 Fixed and flexible columns

The first thing a reader notices—except different styles for keywords, etc.—is bad
column alignment like this:

if x=y then write(’align’)
else print(’align’);

This is not an illustration of the flexible column format. But the piece of code has
been typeset with the listings package using some unusual settings. However, the
column alignment can’t be disturbed if we put the characters in boxes of identical
width:

("align')

i f X =y then write al g n
else print(’”align?’);

21

The default procedure of this package works with a slight modification. All input
will be cut up in units to find keywords. We put each unit in a box, which width
is multiplied by the number of characters we put in, of course. The result is

if x=y then write (’ align ’)

else print (* align ’);

Since we put wide and thin characters in the same box, the width of a single
character box need not to be the width of the widest character. The empirical value
0.6em (which is called ‘base width’ later) is a compromise between overlapping
characters and the number of boxes not exceeding the line width, i.e. how many
characters fit a line without getting an overfull \hbox.

But overlapping characters are a problem if you use many upper case letters,
e.g. WOMEN—blame me and not the women, in fact MEN doesn’t look better. The
flexible column format typesets all characters at their natural width. In particular
characters never overlap. If a word requires more space than reserved, the rest
of the line simply moves to the right. If a following word needs less space than
reserved or if there are spaces following each other, this space is used to fix the
column alignment. Arne John Glenstrup (whose idea the format was) pointed out
that he had good experience with flexible columns and assembler listings. The
differences can be summed up as follows: The fixed column format ruins the nice
spacing intended by the font designer, and the flexible format ruins the column
alignment (possibly) intended by the programmer. We illustrate that.

verbatim fixed columns flexible columns
with 0.6em with 0.45em

WOMEN are WOMEN are WOMEN are
MEN MEN MEN

WOMEN are WOMEN are WOMEN are
better MEN better MEN better MEN

Hope this helps. In flexible mode, one of the two blanks in the first line is used to
fix the column alignment. This is unlike TEX’s glue: the first ‘crumple zones’ take
it all. There is never a crumble zone if Oem is the base width. In this case the first
‘MEN’ would had to the left since the preceding spaces were 7 - 0em = Oem wide.
If you use such extreme values, you should try keepspaces=true to protect the
spaces.

— Why are women better men? Do you want to philosophize? Well, have | ever said that
the statement “women are better men” is true? | can't even remember this about “women
are men” ...

flexiblecolumns=(true|false) turns the flexible columns on and off, respec-
tively. The predefinition of the ‘base width’ is basewidth={0.6em,0.45em}, where
the first value is for fixed mode and the second for flexible columns. Change it if
you like, but be very careful!

2.12 Indexing

is just like emphasizing identifiers—I mean the usage:

22

\1lstset{index={square},
index={[2] root}}

for i:=maxint to 0 do \begin{1lstlisting}{}
begin for i:=maxint to 0 do
j:=square(rootroot(i)); begin
end; j:=square (root(i));
end;
\end{1lstlisting}

Of course, you can’t see anything here. You will have to look at the index file.

— Why the ‘index’ key is able to work with multiple identifier lists? This question is strongly

related to the ‘indexstyle’ key. Someone might want to create multiple indexes or want to
insert prefixes like ‘constants’, ‘functions’, ‘keywords’, and so on. The ‘indexstyle’ key
works like the other style keys except that the last token must take an argument, namely the
(printable form of the) current identifier.
You can define ‘\newcommand\indexkeywords [1]{\index{keywords, #1}}' and make similar
definitions for constant or function names. Then ‘indexstyle=[1]\indexkeywords’ might
meet your purpose. This becomes easier if you want to create multiple indexes with the index
package (CTAN/macros/latex/contrib/supported/camel). If you have defined appropriate
new indexes, it is possible to write ‘indexstyle=\index [keywords]’, for example.

— Let’s say, | want to index all keywords. It would be annoying to type in all the keywords again,
specifically if the used programming language changes frequently. Just read ahead.

The index key has in fact two optional arguments. The first is the well-known
(class number), the second is a comma separated list of other keyword classes
whose identifiers are indexed. The indexed identifiers then change automatically
with the defined keywords—not automagically, it’s not an illusion.

Eventually you need to know the names of the keyword classes. It’s usually the
key name followed by a class number, for example, emph2, emph3, ..., keywords2
or index5. But there is no number for the first order classes keywords, emph,
directives, and so on.

— ‘index=[keywords]’ does not work. The package can’t guess which optional argument
you mean. Hence you must specify both if you want to use the second one. You should try
‘index=[1] [keywords]’.

2.13 Closing and credits

You'’ve seen a lot of keys but you are far away from knowing all of them. The next
step would be real use of the listings package. If you encounter any problems or
need some special things, come back to this documentation. Look up the known
commands and keys in the reference guide; then you should be able to understand
and use all the other. Complain if this is not true: email to cheinz@gmx.de.

There is one question ‘you’ haven’t asked all the last pages: who is to blame.
I’ve written the guides, coded the listings package and some language drivers.
Other people defined more languages or contributed their ideas; many other people
made bug reports (first bug finder is listed). Special thanks go to (alphabetical
order)

Andreas Bartelt, Jan Braun, Denis Girou, Arne John Glenstrup,
Rolf Niepraschk, Rui Oliveira and Boris Veytsman.

Moreover I wish to thank

23

Bjorn Adlandsvik, Gaurav Aggarwal, Jason Alexander,

Donald Arseneau, Claus Atzenbeck, Peter Bartke,

Olaf Trygve Berglihn,Peter Biechele, Kai Below, David Carlisle,
Patrick Cousot, Holger Danielsson, Detlev Droge,

Anders Edenbrandt, David John Evans, Harald Harders,

Christian Haul, Aidan Philip Heerdegen, Jim Hefferon, Jiirgen Heim,
Dr. Jobst Hoffmann, Torben Hoffmann, Berthold H6llmann,

Ralf Imhauser, R. Isernhagen, Marcin Kasperski, Dr. Peter Leibner,
Thomas Leduc, Magnus Lewis-Smith, Andreas Matthias,

Knut Miiller, Torsten Neuer, Heiko Oberdiek, Zvezdan V. Petkovic,
Michael Piotrowski, Manfred Piringer, Vincent Poirriez, Ralf Quast,
Aslak Raanes, Detlef Reimers, Magne Rudshaug, Andreas Stephan,
Gregory Van Vooren, Dominique de Waleffe, Michael Weber,

Sonja Weidmann, Herbert Weinhandl, Michael Wiese, Jorn Wilms
and Kai Wollenweber.

This list is probably not complete since I have’t updated it at all. ’ll use the next
release to do so.

3 Tips and tricks
3.1 Troubleshooting

Before you make a bug report, consult the reference guide whether the problem is
already known. If not, please try to locate the problem. Start from the minimal in
section 1.1. If you use other packages, load only the required ones. Then add the
ITEX code which causes the problem, but keep it short and eliminate packages
not necessary. Remove some code from the file until the problem disappears. Then
you’ve found a crucial piece. Start over with removing until all code is substantial.
Then send a bug report via email to cheinz@gmx . de and include the now modified
minimal file and the created .log-file. If you use a very special package (i.e. not
on CTAN), also include the package if its software license allows it.

3.2 National characters

Apart from typing in national characters directly, you can use the ‘escape’ feature
described in section 4.11. The keys escapechar, escapeinside, and texcl allow
partial usage of BKTEX code, for example:

\begin{lstlisting}[escapechar=‘]{}
aeTee ‘A"a \‘e {\=\1i} {\oe} \u u‘
\end{1lstlisting}

The escape character delimits the IXTEX code: the first reverse apostrophe starts
the escape, the second belongs to the grave accent command, and the third even-
tually ends the escape.

If you use A (Lambda, the ¥'TEX pendant to Omega) and want, for example,
Arabic comment lines, you need not to write \begin{arab} ... \end{arab} each
comment line. This can be automated:

\1stset{escapebegin=\begin{arab},escapeend=\end{arab}}

24

\begin{lstlisting} [texc1]{}

// Replace text by Arabic comment.
for (int i=0; i<1; i++) { };
\end{1lstlisting}

If your programming language doesn’t have comment lines, you’ll have to use
escapechar Or escapeinside:

\1lstset{escapebegin=\begin{greek}, escapeend=\end{greek}}

\begin{lstlisting}[escapeinside=‘’]{}
/* ‘Replace text by Greek comment.’ */
for (int i=0; i<1; i++) { };
\end{lstlisting}

Note that the delimiters ¢ and ’ are essential here. The example doesn’t work
without them. There is a more clever way if the comment delimiters of the pro-
gramming language are single characters like the braces in Pascal:

\1stset{escapebegin=\textbraceleft\begin{arab},
escapeend=\end{arab}\textbraceright}

\begin{lstlisting}[escapeinside=\{\}]1{}
for i:=maxint to 0 do
begin

{ Replace text by Arabic comment. }
end;
\end{1lstlisting}

Please note that the ‘interface’ to A is completely untested. Reports are welcome!

3.3 Listings with graphics

Herbert Weinhandl found a very easy way to include graphics in listings. Thanks
for contributing this idea—an idea I never have had.

Some programming languages allow the dollar sign to be part of an identifier.
But except for intermediate function names or library functions, this character is
most often unused. The listings package defines the mathescape key, which (if on)
lets ‘¢’ escape to TEX’s math mode. This makes the dollar character an excellent
candidate for our purpose here: use a package which can include a graphic, set
mathescape true, and include the graphic between two dollar signs, which are
inside a comment.

The following example is originally from a header file I got from Herbert. For
the presentation here I use the 1stlisting environment and an excerpt from the
header file. The \includegraphics command is from David Carlisle’s graphics
bundle.

\begin{lstlisting}[mathescape=true]{}

/*
$ \includegraphics[height=1cm]{defs-pl.eps} $
*/
typedef struct {
Atom_T *V_ptr; /* pointer to Vacancy in grid */
Atom_T *x_ptr; /% pointer to (A|B) Atom in grid */
} ABV_Pair_T;
\end{lstlisting}

25

The result looks pretty good. Unfortunately you can’t see it.

3.4 Bold typewriter fonts

Many people asked for bold typewriter fonts since they aren’t included in the
ETEX standard distribution. Here now one answer on how to use them in spite of
that. Firstly you’ll need Metafont source files for bold typewriter, e.g. cmbtt8.mf,
cmbtt9.mf and cmbtt10.mf from CTAN/fonts/cm/mf-extra/bold. Secondly you
have to create .tfm-files, i.e. run the Metafont program on these sources. This is
possibly done automatically when you use the fonts in a document. Finally you
must tell ATEX that you’ve installed bold typewriter fonts. Just use

\DeclareFontShape{0T1}{cmtt}{bx}{n}
{<5><6><7><8>cmbtt8Y
<9>cmbtt9Y%
<10><10.95>cmbtt10%
<12><14.4><17.28><20.74><24.88>cmbtt10%
H>

(before \begin{document}). That’s all!

3.5 How to

Reference line numbers You want to put \label{({whatever)} into a KTEX
escape which is inside a comment whose delimiters aren’t printed? The compiler
won’t see the ATEX code since inside a comment, and the listings package won’t
print anything since the delimiters are dropped and \label doesn’t produce any
printable output. Well, your wish is granted.

In Pascal, for example, you could make the package recognize the ‘special’
comment delimiters (*@ and @*) as begin-escape and end-escape sequences. Then
you can use this special comment for \1abels and other things.

\1lstset{escapeinside={(*@}{@*)}}

for i:=maxint to 0 do \begin{lstlisting}{}
> begin for i:=maxint to 0 do
{ comment } begin
+ end; { comment }(*@\label{comment}@%*)
end;
Line 3 shows a comment. \end{1stlisting}
Line \ref{comment} shows a comment.
— Can | use ‘(*@’ and '*)’ instead? Yes.
— Can | use ‘(*’ and ‘*)' instead? Sure. If you want this.
— Can | use ‘{@" and ‘@}’ instead? No, never! The second delimiter is not allowed. The

character ‘@’ is defined to check whether the escape is over. But reading the lonely ‘end-
argument’ brace, TEX encounters the error ‘Argument of @ has an extra }'. Sorry.

— Can | use ‘{’ and ‘}’ instead? No. Again the second delimiter is not allowed. Here now
TEX would give you a ‘Runaway argument’ error. Since ‘}’ is defined to check whether the
escape is over, it won't work as ‘end-argument’ brace.

— And how can | use a comment line? For example, write ‘escapeinside={//*}{\""M}'.
Here \~"M represents the end of line character.

26

Reference guide

4 Main reference

Your first training is completed. Now that you’ve left the user’s guide, the friend
telling you what to do has gone. Get more practice and become a journeyman!

— Actually, the friend hasn’t gone. There are still some advices, but only from time to time.

4.1 Data types

General notes The parameters of commands and keys are specified either by
their type or via explicitly given arguments. For example, a key is presented
either as ‘key=value’ pair or as ‘key=data type’. Both value and data type will be
enclosed in (). Most data types and values are self-explanatory. However some
hints can’t be wrong.

1. A list always means a comma separated list. You must put braces around
such a list. Otherwise you’ll get in trouble with the keyval package; it com-
plains about an undefined key.

2. If you use an optional argument of a key inside an optional key=value list,
you must put braces around the whole value.

3. A vertical rule indicates an alternative, e.g. (true|false) allows true or
false as arguments.

4. If you need one of the special characters {}#%\ in or as an argument, the
character(s) must be preceded by a backslash. This means that you must
write \} for the single character ‘right brace’, for example.

Some data types
basic style)—token sequence for type selection (size, typeface, colour, etc.)
character)—a single character
character sequence)—a character string

delimiter)—a character string used as delimiter

(

(

(

(

(dimension)—a TEX dimension
(identifiers)—a list of identifiers
(key=value list)—a list of key=value pairs
(keywords)—a list of keywords
(

keyword classes)—a list of keyword classes; keyword classes are, for example,
keywords, keywords2, and texcs

(number)—a TEX number
(style)—Tlike (basic style) but the very last token might take exactly one argument,

namely the character string to typeset

27

hints

(subset of . ..)—any combination of the characters

(tokens)—arbitrary token sequence (potentially unsafe since arbitrary, so use it
wisely)

Scheme of presentation

command, environment or key with (parameters) default

explanation and more details

The label in the left margin (if present) provides information about the command,
environment or key: ‘addon’ indicates additional functionality, ‘new’ a new and
‘changed’ a modified key, ‘data’ a data containing command (which is therefore
adjustable via \renewcommand), and so on.

The label in the right margin is the introductory version number. If you find
verbatim text next to the number then this is the predefined value. Note that
some keys are reset every listing, namely the keys which can be used on individual
listings only.

4.2 Languages and styles

Table 1 on page 14 shows all languages and dialects provided by 1lstdrvrs.dtx.
They have all bugs coming from the language defining commands described in
section 4.15, e.g. in Ada and Matlab it is still possible that the package assumes
a string where none exists.

— Err, have you just said thet the package isn’t suitable to typeset Ada or Matlab code? No,
sometimes the highlighting isn’t correct. These rare cases are defined in section 4.15 in the
paragraph about strings.

The ‘empty’ language detects no keywords, no comments, no strings, and so on.
Note that the arguments (language), (dialect), and (style name) are case insensi-
tive and that spaces have no effect.

language=[(dialect)] (language) 8

activates a (dialect of a) programming language.

defaultdialect=[(dialect)](language)

defines (dialect) as default dialect for (language). This dialect will be used
for (language) if no dialect is given explicitly. If you have defined a default
dialect other than empty, for example defaultdialect=[iamalfool, you
can’t select the ‘empty’ dialect, even not with language=[]fool.

style=(style name) {3
activates the key=value list stored with \1lstdefinestyle.

\lstdefinestyle{(style name)}{(key=value list)}

stores the key=value list.

— It's easy to crash the package with ‘style’. Write '\1stdefinestyle{crash}{style=crash}’
and "\1stset{style=crash}'. TpX's capacity will exceed, sorry [parameter stack size]. Only
bad boys use such recursive calls, but only good girls use this package. Thus the problem is
of minor interest.

28

version

0.17

0.19

0.18

0.19

changed

4.3 Typesetting listings

Please note that all optional (key=value list)s modify parameters for single listings
only.

\1stset{{key=value list)}

sets the values of the specified keys, see also section 2.4.

\1stinline [(key=value list)]

works like \verb but uses the active language and style. You can write
“\lstinline!var i:integer;!’ and get ‘var i:integer;’. Note that these
listings use flexible columns except flexiblecolumns=false is a key=value
pair in the optional argument.

\1stinputlisting[(key=value list)]1{(file name)}

typesets the stand alone source code file as a displayed listing, i.e. the com-
mand starts a new paragraph for the listing.

1stlisting[(key=value list)1{{name)}

typesets the code between \begin{lstlisting} (+ arguments + line break)
and \end{1lstlisting} as a displayed listing. Source code directly before
and IATEX code after the end of environment is typeset respectively executed.

Same named listings have common line counters, i.e. the second (same
named) listing continues the first, the third continues the second, and so
on. There are two exceptions: An empty-named listing starts with line
number 1 and is continued with space-named listings (= { }).

extendedchars=(true|false) or extendedchars false

allows or prohibits extended characters in listings, i.e. characters with codes
128-255. If you use extended characters, you should use the fontenc or
inputenc package.

gobble=(number) 0
gobbles (number) characters at the beginning of each environment code line.
Tabulators might expand to tabsize spaces before they are gobbled. Code
lines with less than (number) characters are viewed empty.

Don’t indent the end of environment by more than gobble characters, but
less characters are allowed.

first=(number) 1

last=(number) 9999999
can be used on individual listings only. They determine the (relative) phys-
ical input lines used to print displayed listings.

print=(true|false) or print true

controls whether displayed listings are typeset. If you use print=false at
the beginning of a document to compile a draft version, you might use print
in optional arguments to typeset particular listings despite of that.

29

0.19

0.18

0.1

0.15

0.18

0.19

0.1
0.1

0.12

new

new

optional

optional

new

new

new

showlines=(true|false) or showlines false
If true, the package prints empty lines at the end of listings. Otherwise these
lines are dropped (but they count for line numbering).

float=(subset of tbph) or float tbp

makes sense with individual displayed listings only and lets them float. The
argument controls where BTEX is allowed to put the float: at the top or
bottom of the current/next page, on a separate page, or here = where the
listing is.

boxpos=(b|c|t) c

Sometimes the listings package puts a \hbox around a listing—or it couldn’t
be printed or even processed correctly. The key determines the vertical
alignment to the surrounding material: bottom baseline, centered or top
baseline.

Note that \hboxed listings don’t use spread, for example.
aboveskip=(dimension)

belowskip=(dimension)

define the space above and below displayed listings.
lineskip=(dimension) Opt

specifies the additional space between lines in listings.

4.4 Figure out the appearance

basicstyle=(basic style) 8
identifierstyle=(style) N
commentstyle=(style) \itshape
stringstyle=(style) 8
keywordstyle=(style) \bfseries
ndkeywordstyle=(style) keywordstyle
texcsstyle=(style) keywordstyle
directivestyle=(style) keywordstyle

determine the style in which special parts of a listing appear. The last token
(except basicstyle) might be an one-parameter command like \textbf or
\underbar.

emph=[(number)]{(identifiers)}
moreemph=[(number)] {{identifiers)}

deleteemph=[(number)]{{identifiers)}

define, add and remove (identifiers) from ‘emphasize class (number)’. If you
don’t give an optional argument, the package assumes (number) = 1.

30

0.20

0.20

0.18

0.21
0.21

0.17

0.18
0.18
0.11
0.12
0.11
0.19
0.20
0.20

0.21
0.21
0.21

new emphstyle=[{number)]{(style)} 0.21

defines the style for class (number).

stringspaces=(true|false) true 0.12

lets blank spaces in strings appear . or as blank spaces.

visiblespaces=(true|false) false 0.20

lets all blank spaces appear . or as blank spaces.

visibletabs=(true|false) false 0.20
make tabulators visible or invisible. A visible tabulator looks like .,
but that can be changed. If you choose invisible tabulators but visible spaces,
tabulators are converted to an appropriate number of spaces.

tab=(tokens) 0.20

(tokens) is used to print a visible tabulator. You might want to use \to,
\mapsto, \dashv or something like that instead of the strange default
definition.

tabsize=(number) 8 0.12

sets tabulator stops at columns (number)+1, 2-(number)+1, 3-(number)+1,
and so on. Each tabulator in a listing moves the current column to the next
tabulator stop.

formfeed=(tokens) \bigbreak 0.19

Whenever a listing contains a form feed (tokens) is executed.

4.5 Frames

frame=(subset of trb1TRBL) {+ 0.19

The characters trb1TRBL are attached to lines at the top and bottom of a
listing and to lines on the right and left. There are two lines if you use upper
case letters. If you want a single frame around a listing, write frame=t1lrb
or frame=bltr, for example. If you want double lines at the top and on the
left and no other lines, write frame=TL.

Note that frames reside outside the listing’s space. Use spread if you want
to shrink frames (to \linewidth for example) and use indent to move line
numbers inside frames.

framerulewidth=(dimension) 0.4pt 0.19

framerulesep=(dimension) 2pt 0.19

These keys control the width of the rules and the space between double rules.

frametextsep=(dimension) 3pt 0.19

controls the space between frame and listing.

framespread=(dimension) Opt 0.20

makes the frame on each side half (dimension) wider.

31

frameround=(t|£)(t|f)(t|f)(t|f)

ffff 0.20

The four letters are attached to the top right, bottom right, bottom left
and top left corner. In this order. t makes the according corner round.
If you use round corners, the rule width is controlled via \thinlines and

\thicklines.

Note: The size of the quarter circles depends on frametextsep and is in-
dependent from framespread. The size is possibly adjusted to fit BTEX’s

circle sizes.
new backgroundcolor={{color model)}{color)

new framerulecolor={(color model)}{color)

0.21
0.21

specify the colour of the background and the rules respectively. Note that
you need the color package to use these keys.

frame does not work with fancyvrb=true or when the package internally makes
a \hbox around the listing! And there are certainly more problems with other

commands. Take the time to report in.

for i:=maxint to 0 do
begin

{ do nothing }
end;

\1lstset{framespread=5mm}
\begin{lstlisting}[frame=trbl]{}
for i:=maxint to 0 do
begin

{ do nothing }
end;
\end{1lstlisting}

Do you want exotic frames? Try the following key if you want for example

I Y
for i:=maxint to 0 do

begin
{ do nothing }
end;
S =4

frameshape={(top shape)}{(left shape)}{(right shape)}{(bottom shape)}

\begin{1lstlisting}{}
for i:=maxint to 0 do
begin

{ do nothing }
end;
\end{1lstlisting}

0.20

gives you full control over the drawn frame parts. The arguments are not

case sensitive.

Both (left shape) and (right shape) are ‘left-to-right’ y|n character sequences

(or empty).

Each y lets the package draw a rule, otherwise the rule is

blank. These vertical rules are drawn ‘left-to-right’ according to the specified

shapes. The example above uses yny.

(top shape) and (bottom shape) are ‘left-rule-right’ sequences (or empty).
The first ‘left-rule-right’ sequence is attached to the most inner rule, the
second to the next, and so on. Each sequence has three characters: ‘rule’ is
either y or n; ‘left’ and ‘right’ are y, n or r (which makes a corner round).
The example uses RYRYNYYYY for both shapes: RYR describes the most inner
(top and bottom) frame shape, YNY the middle, and YYY the most outer.

32

new

data

data

data

To summarize, the example above used
\lstset{frameshape={RYRYNYYYY}{yny}{yny}{RYRYNYYYY}}

Note that you are not resticted to two or three levels. However you'll get in trouble
if you use round corners when they are too big.

4.6 Captions

In despite of ATEX standard behaviour captions and floats are independent from
each other here. You can use captions with non-floating listings. It’s your choice
whether a titled listing also gets a number, how the number looks like, and so on.
title=(title text)
can be used on individual displayed listings only. (title text) is used for a
title without any numbering and without a header.
caption={[(short)] (caption text)}

can be used on individual displayed listings only. If you don’t use [{short)],
the package assumes (short)={caption text). If (short) is empty, the listing
is neither numbered nor it appears in the list of listings.

Note: The braces around the value are necessary if and only if you use the
optional (short) argument (or if (caption text) contains 1).
label=(name)

makes a listing with non-empty (short) referable via \ref{(name)}.

\1lstlistoflistings

prints a list of listings. The names are the (short) captions, file names or
names of the listings.

\1lstlistlistingname Listings
The header name for the list of listings.

\1lstlistingname Listing
The header name for listings with captions.

\thelstlisting \arabic{lstlisting}
prints the caption’s label number.

captionpos=(subset of tb) t
specifies the position(s) of the caption.

abovecaptionskip={dimension) \smallskipamount

belowcaptionskip=(dimension) \smallskipamount

is the vertical space above respectively below each caption.

33

0.21

0.20

0.21

0.16

0.16

0.20

0.20

0.20

0.20
0.20

data

753
752
751
750
749
748
747
746

4.7 Labels

labelstep=(number) 0

All lines with “line number = 0 modulo (number)” get a label. Usu-
ally this label is the line number, but it’s controlled by labelstyle and
\thelstlabel. (number) = 0 turns the labels off.

labelstyle=(style) ¢

determines the font and size of the labels.

\thelstlabel \arabic{lstlabel}
prints the lines’ label numbers.
labelsep=(dimension) 10pt

is the distance between label and listing.
firstlabel={number)

advancelabel=(number) 0
sets respectively advances the number of the first label. Both keys must be
used in the optional key=value list.

We show an example on how to redefine \thelstlabel. But if you test the
example, you won’t get the result shown on the left.

\renewcommand*\thelstlabel{\oldstylenums{\the\value{lstlabel}}}

\begin{lstlisting}[firstlabel=753]{}

begin { empty lines } begin { empty lines }

end; { empty lines } indé{i :rflftzilir}les b
en S 1s 1I].g

Exercise: The example shows a sequence n,n + 1,...,n + 7 of 8 three-digit
figures such that the sequence contains each digit 0,1,...,9. But 8 is not mini-
mal with that property. Find the minimal number and prove that it is minimal.
Minimal means nonnegative number here. How many minimal sequences do exist?

Now look at the generalized problem: Let k£ € {1,...,10} be given.
Find the minimal number m € {1,...,10} such that there is a sequence
n,n+1,...,n+m—1 of m k-digit figures which contains each digit {0,...,9}.
Prove that the number is minimal. How many minimal sequences do exist?

If you solve this problem with a computer, write a TEX program!

34

0.16

0.16

0.20

0.19

0.20
0.19

4.8 Indexing

addon index=[(number)] [(keyword classes)]{(identifiers)} 0.19
new moreindex=[{number)] [{keyword classes)]1{(identifiers)} 0.21
new deleteindex=[{number)] [{keyword classes)]{(identifiers)} 0.21

define, add and remove (identifiers) and (keyword classes) from index list
no. (number). If you don’t specify the optional number, the package assumes
(number) = 1.

Each appearance of the explicitly given identifiers and each appearance of
the identifiers of the specified (keyword classes) is indexed. For example, you
could write index=[1] [keywords] to index all keywords. Note that [1] is
required here—otherwise we couldn’t use the second optional argument.

renamed,addon indexstyle=[(number)] (tokens (‘one parameter’ macro)) \lstindexmacro 0.19

(tokens) actually indexes the identifiers for list no. (number). In contrast
to the style keys, (tokens) must read exactly one parameter, namely the
identifier. Default definition is

\newcommand\1lstindexmacro [1]{\index{{\ttfamily#1}}}

which you shouldn’t modify. Define your own indexing commands and use
them as argument to this key.

4.9 Line shape and breaking

linewidth=(dimension) \linewidth 0.21

defines the base line width for listings. Please note that other keys,
e.g. spread, are taken into account additionally.

bug spread={dimension) or spread={(inner), (outer)} Opt 0.16

defines additional line width for listings, which may avoid overfull \hboxes
if a listing has long lines. The inner and outer spread is given explicitly or is
equally shared. For one sided documents ‘inner’ and ‘outer’ have the effect
of ‘left’ and ‘right’. Note that indent is always ‘left’.

Bug (two sided documents): At top of page it’s possible that the package uses
inner instead of outer spread or vice versa. This happens when TEX finally
moves one or two source code lines to the next page, but hasn’t decided it
when the listings package processes them. Work-around: interrupt the listing
and/or use an explicit \newpage.

indent=(dimension) Opt 0.19
indents each listing by (dimension). This is the best way to move line
numbers and the listing to the right (or left if the dimension is negative).

wholeline=(true|false) false 0.19

prevents or lets the package use indention from list environments like
enumerate or itemize.

35

breaklines=(true|false) or breaklines false 0.20

activates or deactivates automatic line breaking of long lines.

breakindent=(dimension) 20pt 0.20
is the indention of the second, third, ... line of broken lines.
breakautoindent=(true|false) or breakautoindent true 0.20

activates or deactivates automatic indention of broken lines. This indention
is used additionally to breakindent and is equal to the indention of the
source code line, see the example below.

visiblespaces=true converts ‘invisibles’ spaces and tabulators to visible ..
This will set ‘auto indent’ to Opt, i.e. there is no automatic indention.

prebreak=(tokens) {3 0.20

postbreak=(tokens) {3 0.20

(tokens) appear at the end of the current line respectively at the beginning
of the next (broken part of the) line.

You must not use dynamic space (in particular spaces) since internally we use
\discretionary. However \space is redefined to be used inside (tokens).

We use tabulators now to create long lines, but the verbatim part uses tabsize=1.

\1lstset{postbreak=\space\space, breakindent=20pt, breaklines}

\begin{lstlisting}{}
"A very long string doesn’t fit the current line width."
"An even longer line doesn’t fit also, of course, and goes over three lines."
\end{1lstlisting}

\begin{lstlisting}[breakautoindent=false]{}
{ Now auto indention is off, and only breakindent=20pt and postbreak are used. }
\end{1lstlisting}

\begin{lstlisting}[visiblespaces]{}

{ ‘visiblespaces=true’ implies ‘breakautoindent=false’. }
\end{1lstlisting}

? A _very._long. string. doesn’t_fit _the_current.line _width.”
” An_even._longer.line_doesn’t._fit_also ,_of course,..
and._goes_over_three_lines.”

{ Now auto indention is off, and only breakindent=20pt and postbreak
are used. }

uuuuuuuuuuuuuuuu {_* visiblespaces =true’_implies._‘breakautoindent=false’._}

36

4.10 Column alignment

flexiblecolumns=(true|false) or flexiblecolumns false

selects the flexible respectively fixed column format, refer section 2.11.
basewidth=(dimension) or

basewidth={(fized), (flexible mode)} {0.6em,0.45em}

sets the width of a single character box for fixed and flexible column mode
(both to the same value or individually).

keepspaces=(true|false) false

keepspaces=true tells the package not to drop spaces to fix column align-
ment and always converts tabulators to spaces.

outputpos=(c|1|r) c
controls horizontal orientation of smallest output units (keywords, identifiers,
etc.). The arguments work as follows, where vertical bars visualize the effect:
|[listing], listing], and |listing| in fixed column mode respectively
| listing|, |listing|, and | listing| with flexible columns.

fontadjust=(true|false) or fontadjust false

If true the package adjusts the base width every font selection. This makes
sense only if basewidth is given in font specific units like ‘em’ or ‘ex’—
otherwise this boolean has no effect.

After loading the package it doesn’t adjust the width every font selection:
it looks at basewidth each listing and uses the value for the whole listing.
This is possibly inadequate if the style keys in section 4.4 make heavy font
size changes, see the example below.

\1lstset{commentstyle=\scriptsize}
\begin{lstlisting}{}
{ scriptsize font
doesn’t look good }
for i:=maxint to 0 do

{ scriptsize font
doesn 't look good }
for i:=maxint to 0 do

begin begin
{ do nothing } { do nothing }
end; end;
\end{1lstlisting}
\begin{lstlisting}[fontadjust]{}
{ scriptsize font { scriptsize font
looks better now } looks better now }
for i:=maxint to 0 do for i:=maxint to 0 do
begin begin .
{ do nothing } { do nothing ¥
end: end;
! \end{lstlisting}

Note that fontadjust also effects the keywords!

37

0.18

0.16
0.18

0.21

0.19

0.20

4.11 Escaping to BTEX
Note: Any escape to BTEX may disturb the column alignment since the package

can’t control the spacing there.
texcl=(true|false) or texcl false

activates or deactivates ATEX comment lines. If activated, comment line
delimiters are printed as usual, but the comment line text (up to the end of
line) is read as ®'TEX code and typeset in comment style.

The example uses C++ comment lines (but doesn’t say how to define them). With-
out \upshape we would get calculate since the comment style is \itshape.

\begin{lstlisting}[texcl]{}

// calculate ai; // \Fpsyape ca}cu}ate a_{ij}
ALl = AGI/ALIG ATi1[35] = ‘f\[J] [31/A0i1(5];
\end{1lstlisting}
mathescape=(true|false) false

activates or deactivates special behaviour of the dollar sign. If activated a
dollar sign acts as TEX’s text math shift.

This key is useful if you want to typeset formulas in listings.

escapechar=(character) or escapechar={} {3+
If not empty the given character escapes the user to BTEX: all code between
two such characters is interpreted as IATEX code. Note that TEX’s special
characters must be entered with a preceding backslash, e.g. escapechar=\J,.

escapeinside=(character){character) or escapeinside={} {3
Is a generalization of escapechar. If the value is not empty, the package
escapes to IATEX between the first and second character.

escapebegin=(tokens) {3

escapeend=(tokens) 8

The tokens are executed at the beginning respectively at the end of each
escape, in particular for texcl. See section 3.2 for an application.

\begin{lstlisting}[mathescape]{}

// calculate aij // calculate a_{ij}
aij = ajj/aij; $a_{ij} = a_{jj}/a_{ij}$;
\end{1lstlisting}
\begin{lstlisting}[escapechar=\}]1{}
// calculate a;; // calcjulate a_{ij}i
aij = aj;/aij; %$a_{ij} = a_{jj}/a_{ij}$%;
\end{1lstlisting}

\1lstset{escapeinside=‘’}

\begin{1lstlisting}{}
// calculate aij; // calc‘ulate a_{ij}’
aij = ajj/aij; ‘$a_{ij} = a_{jjr/a_{ij}$’;
\end{1lstlisting}

38

0.18

0.19

0.19

0.20

0.20
0.20

In the first example the comment line up to a;; has been typeset in comment style
and by the listings package. The a;; itself is typeset in “TEX math mode’ without
comment style. About the half comment line of the second example has been
typeset by this package. The rest is in ‘IATEX mode’ without comment style.

To avoid problems with the current and future version of this package:

1. Don’t use any command of the listings package when you have escaped to
BTEX.

2. Any environment must start and end inside the same escape.

3. You might use \def, \edef, etc., but do not assume that the definitions are
present later—except they are \global.

4. \if \else \fi, groups, math shifts $ and $$, ... must be balanced each
escape.

5. ...

Expand that list yourself and mail me about new items.

4.12 Interface to fancyvrb

The fancyvrb package—fancy verbatims—from Timothy van Zandt provides
magcros for reading, writing and typesetting verbatim code. It has some remark-
able features the listings package doesn’t have. (Some are possible, but you must
find somebody who implements them ; —).

bug fancyvrb=(true|false) 0.19

activates or deactivates the interface. If active, verbatim code is read by
fancyvrb but typeset by listings, i.e. with emphasized keywords, strings,
comments, and so on. Internally we use a very special definition of
\FancyVerbFormatLine.

This interface works with Verbatim, BVerbatim and LVerbatim. But you
shouldn’t use fancyvrb’s defineactive. (As far as I can see it doesn’t matter
since it does nothing at all, but for safety ...) If fancyvrb and listings provide
similar functionality, you should use fancyvrb’s.

Bug (commandchars): If you use fancyvrb’s commandchars, the used com-
mands must not take arguments from the verbatim code except the source
code which is actually typeset. For example, \textcolor{red}{keyword}
is illegal since red is (used to select the colour and) not typeset. There is an
easy work-around: write \newcommand*\myred{\textcolor{red}} and use
\myred{keyword} inside the verbatim code.

39

\1lstset{morecomment=[1]\ }% :-)
\fvset{commandchars =\\\{\}}

First verbatim line. \begin{BVerbatim}
verbatim line. First verbatim line.

\fbox{Second} verbatim line.
\end{BVerbatim}

\par\vspace{72.27pt}

\1lstset{fancyvrb}
First verbatim line. \begin{BVerbatim}

verbatim line. First verbatim line.

\fbox{Second} verbatim line.
\end{BVerbatim}
\1lstset{fancyvrb=false}

The lines typeset by the listings package are wider since the default basewidth
equals not the width of a single typewriter type character.

4.13 Environments

If you want to define your own pretty-printing environments, try the following
command. The syntax comes from IXTEX’s \newenvironment.

\lstnewenvironment{({name)} [{number of parameters)] [{opt. default arg.)]
{(starting code)}{(ending code)}

Both 1stlisting and version 0.17 listing environment are defined with this
command. The latter one is quite simple since the one and only and optional
argument is the name.

\1lstnewenvironment{listing}[1] []
{\gdef\1lst@intname{#1}}
{3

The other is more difficult. First we test whether the nonoptional name argument
is an EOL character. If this is the case, the user has forgotten the name. Then
we use the optional key=value list. The rest ensures correct (continued) line
numbering,.

\lstnewenvironment{lstlisting} [2] []
{\1st@TestEOLChar{#2}%
\1lstset{#1}%
\csname lst@SetFirstLabel\endcsname}
{\csname 1lst@SaveFirstLabel\endcsname}

Finally note that all 1st-environments can also be used in command fashion
like this

\1lstlisting [gobble=4]1{}

\begin{lstlisting}{} \begin{lstlisting}{}

Silly sentence? Silly sentence?

\end{listings} \end{listings}
\endlstlisting

40

0.19

4.14 Language specific keys

optional printpod=(true|false) false

prints or drops PODs in Perl.

optional usekeywordsinside=(true|false) true

The package either use the first order keywords for HTML or prints all
identifiers inside <> in keyword style.

optional makemacrouse=(true|false) true

Make specific: Macro use of identifiers, which are defined as first order key-
words, also prints the surrounding $(and) in keyword style. e.g. you could
get $(strip $(BIBS)). If deactivated you get $(strip $(BIBS)).

4.15 Language definitions

Language definitions and also some style definitions tend to have long definition
parts. This is why I and possibly other people tend to forget commas between
the key=value elements. If you select a language and get a Missing = inserted
for \ifnum error, this is surely due to a missing comma after keywords=value.
If you encounter unexspected characters after selecting a language (or style), you
have either forgotten a comma or you have given to many arguments to a key, for
example, commentline={--}{!}.

\1lstdefinelanguage
[[(dialect)]1]{(language)}
[[(base dialect)1{(and base language)}]
{(key=value list)}
[[{list of required aspects (keywordcomments,texcs,etc.))]]

defines a programming language. If the language definition is based on
another, you must specify the whole [(base dialect)1{{and base language)}.
An empty (base dialect) uses the default dialect! Selecting the new language
executes the (key=value list) after selecting the base language.

The last optional argument should specify all required 1st-aspects. This
is a delicate point since the aspects are described in the developer’s guide.
You might use existing languages as templates. For example, ANSI C uses
keywords, comments, strings and directives.

\1st@definelanguage with same syntax defines languages in the driver files.

\1stalias{(alias)}{{language)}

defines an alias for a programming language. Each (alias) dialect is redi-
rected to the same dialect of {language). It’s also possible to define an alias
for one particular dialect only:

\1stalias[(alias dialect)]{{alias)} [{dialect)]{(language)}

Here all four parameters are nonoptional and an alias with empty (dialect)
will select the default dialect. Note that aliases can’t be nested: The two
aliases ‘\lstalias{fool}{foo2}’ and ‘\lstalias{foo2}{foo3} redirect
fool not to foo3.

Note that a (local) configuration file possibly defines some aliases.

41

0.19

0.20

0.20

0.19

0.18

0.18

optional

optional

optional

optional

new

Keywords We begin with keyword building keys. Note: If you want to enter
\, {, }, % # or & inside or as an argument here or below, you must do it with a
preceding backslash!

keywords={({keywords)}
morekeywords={(keywords)}
deletekeywords={(keywords)}
ndkeywords={(keywords)}
morendkeywords={(keywords)}

deletendkeywords={(keywords)}
define, add or remove the keywords from appropriate list. Please note the
key specialscan below (if you don’t use unusual charaters in keywords.)

texcs={(list of control sequences (without backslashes))}

moretexcs={(list of control sequences (without backslashes))}
defines or adds control sequences for TEX and ITEX.

directives={(list of compiler directives)}
defines compiler directives in C, C++, Objective-C and POV.

keywordsinside=(character){character) or keywordsinside={}

The first order keywords are active only between the first and second char-
acter. This key is used for HTML.

sensitive=(true|false)

makes the keywords case sensitive and insensitive, respectively. This key
affect the keywords only in the phase of typesetting. In all other situations
keywords are case sensitive, for example, deletekeywords={save,Test} re-
moves ‘save’ and ‘Test’, but neither ‘SavE’ nor ‘test’.

specialscan=(true|false) true

enables or disables (faster) the automatic scan for special characters. If
deactivated, you must specify all special characters in the keywords with the
following key(s):

alsoletters={(character sequence)}
alsodigits={(character sequence)}

alsoother={{character sequence)}

These keys support the ‘special character’ auto-detection of the keyword
commands. For our purpose here, identifiers are out of letters (A-Z,a—z,_,@,$)
and digits (0-9), but an identifier must begin with a letter. If you write
keywords={one-two, \#include}, the minus becomes necessarily a digit and
the sharp a letter since the keywords can’t be detected otherwise. This means
that the defined keywords affect the process of building the ‘output units’!

The three keys overwrite such default behaviour. Each character of the
sequence becomes a letter, digit and other, respectively.

42

0.11
0.11
0.18
0.19
0.19
0.19

0.19
0.20

0.18

0.20

0.14

0.21

0.19
0.19
0.19

otherkeywords={(keywords)}

Each given ‘keyword’ is printed in keyword style, but without changing the
‘letter’, ‘digit’ and ‘other’ status of the characters. This key is designed to
define keywords like =>, ->, -->, ——, ::, and so on. If one keyword is a
subsequence of another (like -— and -->), you must specify the shorter first.

Strings Just two keys.

stringtest=(true|false)

enables or disables string tests. If activated, line exceeding strings issue
warnings and the package exits string mode.

string=[(b|d|m|bd)] {(character sequence)}

Each character might start a string or character literal. ’Stringizers’ match
each other, i.e. starting and ending delimiters are the same. The optional
argument controls how the stringzier(s) itself is/are represented in a string
or character literal: it is preceded by a backslash, doubled (or both is allowed
via bd) or it is matlabed. The latter one is a special type for Ada and Matlab
and possibly more languages where the stringizers are also used for other
purposes. In general the stringizer is also doubled, but a string does not
start after a letter or a right parenthesis.

Comments If you have already defined any of the following comments and you
want to remove it, let all arguments to the key empty.

comment=[(type)] [{type option)]{delimiter(s))
comment=[1] (delimiter)
comment=[£] [(n=preceding columns)]{character sequence)

(
comment=[s] {(delimiter)}{(delimiter)}
comment=[d] {(delimiter)}{(delimiter)}{(delimiter)}{(delimiter)}

comment=[n] {(delimiter)}{(delimiter)}

The characters (in the given order) start a comment line, which in general
starts with the delimiter and ends at end of line. If the character sequence
// starts a comment line (like in C++, Comal 80 or Java), commentline=//
is the correct declaration. For Matlab it would be commentline=\}%—note
the preceding backslash.

Each given character becomes a ‘fixed comment line’ separator: it starts a
comment line if and only if it is in column n + 1. Fortran 77 declares its
comments via fixedcommentline=*Cc (n = 0 is default).

Here we have two or four delimiters. The second ends a comment start-
ing with the first, and similarly the fourth and third delimiter for double
comments. If you require three such comments you can use singlecomment
and doublecomment at the same time. C, Java, PL/I, Prolog and SQL
all define single comments via singlecomment={/*}{*/}, and Algol does it
with singlecomment={\#}{\#}, which means that the sharp delimits both
beginning and end of a single comment.

43

0.20

0.19

0.12

0.13
0.13
0.18
0.13
0.13
0.13

is similar to singlecomment, but comments can be nested. Identical argu-
ments are not allowed—think a while about it! Modula-2 and Oberon-2 use
nestedcomment={ (*}{*)}.

optional keywordcomment={(keywords)} 0.17

optional keywordcommentsemicolon={(keywords)}{(keywords)}{(keywords)} 0.17

A (paired) keyword comment begins with a keyword and ends with the
same keyword. Consider keywordcomment={comment,co}. Then ‘comment
...comment’ and ‘co...co’ are comments.

Defining a (double) keyword comment semicolon needs three keyword lists,
e.g. {end}{else,end}{comment}. A semicolon always ends such a comment.
Any keyword of the first argument begins a comment and any keyword of
the second argument ends it (and a semicolon also); a comment starting with
any keyword of the third argument is terminated with the next semicolon
only. In the example all possible comments are ‘end. .. else’, ‘end...end’
(does not start a comment again) and ‘comment. . .;’ and ‘end...;’. Maybe
a curious definition, but Algol and Simula use such comments.

Note: The keywords here need not to be a subset of the defined keywords.
They won’t appear in keyword style if they aren’t.

optional podcomment=(true|false) 0.17

activates or deactivates PODs—Perl specific.

5 Experimental features

This section describes the more or less unestablished parts of this package. It’s
unlikely that they are removed (except it is stated explicitly), but they are liable
to (heavy) changes and improvements.

5.1 Listings inside arguments

There are some things to consider if you want to use \lstinline or the listing
environment inside arguments. Since TEX reads the argument before the ‘lst-
macro’ is executed, this package can’t do anything to preserve the input: spaces
shrink to one space, the tabulator and the end of line are converted to spaces,
the comment character is not printable, and so on. Hence, you must work a bit
more. You have to put a backslash in front of each of the following four characters:
\{}%. Moreover you must protect spaces in the same manner if: (i) there are two
or more spaces following each other or (ii) the space is the first character in the
line. That’s not enough: Each line must be terminated with a ‘line feed’ ~~J. And
you can’t escape to WTEX inside such listings!
The easiest examples are with \1stinline since we need no line feed.

\footnote{\lstinline!var i:integer;! and
\lstinline!protected\ \ spaces! and

\fbox{\1lstinline ! \\\{\}\%!}}

yields® if the current language is Pascal. Now environment examples:

lvar i:integer; and protected spaces and | \{}%

44

\fbox{%~~J
\begin{lstlisting}{}""J
\ 1#e\L& O*+,-./°"J
0123456789: ;<=>7""J

P#8%8 ()x+,—./
0123456789:;<=>7

SS}B{SC'?I?\I;‘\?VI;I(I; IZ([IGYINO @ABCDEFGHIJKLMNO -~ J
M - PQRSTUVWXYZ [\\1~_""J
‘abcdefghijklmno

‘abcdefghijklmno ~~J
parstuvwxyz \{[\}"""J
\end{1lstlisting}}

parstuvwxyz{|}~

\fbox{/~"J
\begin{lstlisting}{}""J

We need no protection here,”"J
\ but\ \ in\ \ this\ \ line.""J
\end{1lstlisting}}

We need no protection here,
but in this line.

— You might wonder that this feature is still experimental. The reason: You shouldn't use listings
inside arguments.

5.2 Export of identifiers

It would be nice to export function or procedure names. In general that’s a dream
so far. The problem is that programming languages use various syntaxes for
function and procedure declaration or definition. A general interface is completely
out of the scope of this package—that’s the work of a compiler and not of a
pretty-printing tool. However, it is possible for particular languages: in Pascal
each function or procedure definition and variable declaration is preceded by a
particular keyword. Note that you must request the following keys with procnames
option.

optional prockeywords={(keywords)} {3 0.19

each specified keyword indicates a function or procedure definition. Any
identifier following such a keyword appears in ‘procname’ style. For Pascal
you might use

prockeywords={program,procedure,function}

optional procnamestyle=(style) keywordstyle 0.19

defines the style in which procedure and function names appear.

optional indexprocnames=(true|false) false 0.19

If activated, procedure and function names are also indexed.

To do: The procnames aspect is still unsatisfactory (since unchanged for more
than a year). It marks (and indexes) only the function definitions so far,
but it would be possible to mark also the following function calls. A key
incremetalprocnames=(true|false) could control whether function names are
added to a special keyword class, which appears in ‘procname’ style. But should
these names be added globally? There are good reasons for both. Of course, we
would also need a key to reset the name list. Globally?

45

new,optional

new,optional

new,optional

5.3 Hyper references

This very small aspect must be requested via hyper option since it is experimental.
One perspective for the future is to combine this aspect with procnames. Then
it should be possible to click on a function name and jump to its definition, for
example.

hyperref={(identifiers)}
morehyperref={(identifiers)}

deletehyperref={(identifiers)}

Hyper references the specified identifiers (via hyperref package). A ‘click’ on
such an identifier jumps to the previous occurrence.

5.4 Literate programming

We begin with an example and hide the crucial key=value list.

\begin{lstlisting}{}
var i:integer; var i:integer;
if (i<0)i «1; if (i<=0) i := 1;
if (i>0) i «0; if (i>=0) i := 0;
if (i£0) i «0; if (i<>0) i := 0;
\end{1lstlisting}
Funny, isn’t it? We could write i := O respectivelyi < 0 instead, but that’s not

literate : —). Now you might want to know how this has been done. Have a close
look at the following key.

literate=(replacement item). .. (replacement item)

First note that there are no commas between the items. Each item consists
of three arguments: {(replace)}{(replacement text)}{(length)}. {replace) is
the original character sequence. Instead of printing these characters, we
use (replacement text), which takes the width of (length) characters in the
output.

Each ‘printing unit’ in (replacement text) must be braced except it’s a single
character. For example, you must put braces around $\1eq$. If you want to
replace <-1-> by $\leftarrowl\rightarrow$, the replacement item would
be {<-1->}{{\leftarrow}1{\rightarrow}}3. Note the braces around
the arrows.

If one (replace) is a subsequence of another (replace), you must use the
shorter sequence first. For example, {-} must be used before {--} and this
before {-->}.

In the example above I've used

literate={:=}{{\gets}}1 {<=}{{$\1lea$}}1 {>=3{{\geq}}1 {<>IH{\neq}}1

46

0.21
0.21
0.21

0.20

new,optional

5.5 LGrind definitions

Yes, it’s a nasty idea to steal language definitions from other programs. Never-
theless, it’s possible for the LGrind definition file—at least partially. Please note
that this file must be found by TgX.

lgrindef=(language)

scans the lgrindef language definition file for (language) and activates it if
present. Note that not all LGrind capabilities have a listings analogue.

Note that ‘Linda’ language doesn’t work properly since it defines compiler
directives with preceding ‘4’ as keywords.

5.6 Automatic formatting

The automatic source code formatting is far away from being good. First of all,
there are no general rules on how source code should be formatted. So ‘format
definitions’ must be flexible. This flexibility requires a complex interface, a power-
ful ‘format definition’ parser, and lots of code lines behind the scenes. Currently,
format definitions aren’t flexible enough (probably not the definitions but the
results). A single ‘format item’ has the form

(input chars)=[{exceptional chars)l{pre)[{“string)](post)

Whenever (input chars) aren’t followed by one of the {ezceptional chars), format-
ting is done according to the rest of the value. If \string isn’t specified, the input
characters aren’t be printed (except it’s an identifier or keyword). Otherwise (pre)
is ‘executed’ before printing the original character string and (post) afterwards.
These two are ‘subsets’ of

e \newline —ensuring a new line;
e \space —ensuring a whitespace;
¢ \indent —increasing indention;
¢ \noindent —descreasing indention.
Now we can give an example. The format definition

\lstdefineformat{C}{}
\{=\newline\string\newline\indent,%
\}=\newline\noindent\string\newline,¥%

;=[\]\string\space}

activated via \lstset{format=C} yields

for (int i=0; i<10; i++)

{ \begin{lstlisting}{}
/% wait */ for (int i=0;i<10; i++){/* wait */};
} \end{1lstlisting}

)

47

0.21

Not good. But there is a (too?) simple work-around:

\1lstdefineformat{C}{}
\{=\newline\string\newline\indent,%
\}=[;]\newline\noindent\string\newline,?
\};=\newline\noindent\string\newline,?
;=[\ J\string\space}

with the following result

for (int i=0; i<10; i++) \begin{lstlisting}{}
{ . for (int i=0;i<10; i++){/* wait */};
) /* wait x/ \end{1lstlisting}

;

Sometimes the problem is just to find a suitable format definition. Further for-
matting is complicated. Here are only three examples with increasing level of
difficulty.

1. Insert horizontal space to separate function/procedure name and following
parenthesis or to separate arguments of a function, e.g. add the space after
a comma (if inside function call).

2. Smart breaking of long lines. Consider long ‘and/or’ expressions. Formatting
should follow the logical structure!

3. Context sensitive formatting rules. It can be annoying if empty or small
blocks take three or more lines in the output—think of scrolling down all
the time. So it would be nice if the block formatting was context sensitive.

Note that this is a very first and clumsy attempt to provide automatic formatting—
clumsy since the problem isn’t trivial. Any ideas are welcome. Implementations
also. Eventually you should know that you must request format definitions at
package loading, e.g. via \usepackage [formats]{listings}.

6 Forthcoming

I’d like to support more languages, for example Maple, PostScript, Reduce, and so
on. Fortunately my lifetime is limited, so other people may do that work. Please
(e-)mail me your language definitions.

Some people made suggestions to extend the functionality. There things aren’t
listed here. Feel free to email me your suggestions.

48

