
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Andreas Ess

Virtual cutting using smoothed particles

Summer Term 2004

Advisor:
Simone Hieber

Institute:
Prof. Dr. Petros Koumoutsakos
Institute of Computational Science

23.7.2004

II

III

Abstract

This thesis presents a particle–based simulation of a solid material to be used in a
virtual surgery simulator. The simulation of the material is based on the generalized
Hooke’s Law, extended by the Kelvin–Voigt damping model, and is discretized using
Smoothed Particle Hydrodynamics (SPH). The boundary conditions are solved by the
use of ghost particles, representing fixed and stress–free boundaries.
The idea of ghost particles for stress–free boundaries is extended to support cutting of
the material. Here, two different methods are examined that preserve geometry of the
computational elements and thus only increase the computational overhead slightly.
Cut surfaces are introduced to translate the movement of the virtual surgery instrument
into information needed for splitting the particles.
The results obtained by using the methods developed within this semester thesis under-
line the usefulness of using SPH for a virtual surgery simulator.

IV

Contents

1 Introduction 1

2 Particle Method Approach 3
2.1 Smoothed Particle Hydrodynamics. 3

2.1.1 Spatial Derivatives. 4
2.1.2 Evaluation Based on Initial Positions. 4
2.1.3 Visualization of the surface. 4

2.2 Governing Equations and Particle Discretization. 5
2.2.1 Integration Method. 6
2.2.2 Cell Lists . 7

2.3 Boundary Conditions Solved by Ghost Particles. 7
2.3.1 Ghost Particles. 7
2.3.2 Fixed Boundary. 8
2.3.3 Stress–free Boundary. 8

3 Virtual Cutting 11
3.1 Basic Idea. 11
3.2 Cutting by Converting Particles. 12
3.3 Cutting by Splitting Particles. 13

3.3.1 Cut Surface. 15
3.3.2 Splitting the Particles. 17

4 Implementational Issues 19
4.1 Class overview . 19

4.1.1 Particle . 19
4.1.2 ParticleList . 20
4.1.3 Actions on all particles. 21
4.1.4 Other classes. 21
4.1.5 Integration into user interface. 22

4.2 Marching Cubes. 22

5 Results 23
5.1 Experimental Results. 23

5.1.1 Cutting by Converting. 23
5.1.2 Cutting by Splitting Particles. 24

5.2 Performance. 24

6 Conclusion 31

V

VI CONTENTS

7 Future Work 33
7.1 Performance. 33
7.2 Physically–based simulation. 33
7.3 User interaction. 34

8 Contents of CD 35

Bibliography 37

Chapter 1

Introduction

Virtual surgery simulation has nowadays gained in importance due to promising ad-
vantages against current surgery training, like reproducibility of individual operations,
low cost and the possibility of rapid exchange of information.

A very important point in virtual surgery simulation is the geometric modification
of the biological tissue. While other works focus on accurate modelling of tissue inter-
action with a scalpel using tetrahedral meshes [2], this thesis inspects the possibilities
of using Smoothed Particle Hydrodynamics (SPH) for virtual surgery.
SPH is a mesh–free method for solving fluid dynamic equations. It provides a larger de-
gree of accuracy than standard mass–spring systems at a lower computational overhead
than FEM. This is an optimal basis for a surgery simulation, which needs to provide
means for efficient modification of the organ’s geometry in real–time, while still offer-
ing a sufficiently accurate model of the tissue. In contrast to FEM models, where a cut
can heavily increase the size of the tetrahedral mesh, the actual topology is not affected
by a cut in the approaches presented here.
The focus of this semester thesis lies in the physically–based simulation of the tissue,
including boundary conditions, as well as basic cutting functionality. For the latter, two
approaches are examined and discussed.

This semester thesis is based on two previous publications—in [7], SPH is dis-
cussed as a possibility for virtual surgery. In [4], volumetric organ modelling using
SPH, as well as the handling of the virtual scalpel is described. While [4] focuses
on the visualization aspect, this thesis first describes the modelling of the governing
equations for a linear, viscoelastic solid using SPH in chapter2. This also includes a
description for handling boundary conditions using ghost particles. Chapter3 forms
the integral part of the thesis. Both the implementation of two cutting algorithms,
as well as the integration into the existing framework are presented. Next, chapter4
describes some of the implementational measures taken to improve performance and
simplify further extension of the code. Then, results are presented and discussed in
chapter5. Chapter6 gives a conclusion and chapter7 an overview of things yet to be
done. Finally, chapter8 gives an overview of the accompanying CD.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Particle Method Approach

In this chapter, the equations for Smoothed Particle Hydrodynamics (SPH) are pre-
sented. After a description of the method, its application to the governing equations of
the simulation of a linear, viscoelastic material is shown. Then, boundary conditions
and a possible implementation using so–called ghosts particles are pointed out.

2.1 Smoothed Particle Hydrodynamics

SPH [9] approximates any field quantityA at a positionx by a weighted sum of con-
tributions from all particles:

A(x) =
∑

b

AbVbW (x− xb, h) (2.1)

Here, the summation extends over all particles, withAb denoting the function value
at the locationxb of the b–th particle, andVb its volume.
The functionW (x, h) is called the kernel—a weighting scheme to quantify the influ-
ence of the particles in the superposition. It is an approximation of the dirac function:

δ(x) = lim
h→0

W (x, h) (2.2)

The parameterh is called the smoothing length and is used to control the size of
the support radius, i.e. the number of neighboring particles that are considered.

For this semester thesis, a quartic spline kernel of second order (2.3) is used. It is
normalized at the beginning of the simulation to ensure condition (2.4) on a particlep.

W (x, h) = M5(r, h) =
1
π


s4

4 −
5s2

8 + 115
192 0 ≤ s < 1

2 , s = |r|
h

− s4

6 + 5s3

6 + 5s2

4 + 5s
24 + 55

96
1
2 ≤ s < 3

2 ,
(2.5−s)4

24
3
2 ≤ s < 5

2
0 s ≥ 5

2
(2.3)∑

j

VjW (xp − xj, h) = 1 (2.4)

3

4 CHAPTER 2. PARTICLE METHOD APPROACH

2.1.1 Spatial Derivatives

In SPH, the spatial derivative of any approximated field quantity on a particlea can be
calculatedexactlyby derivating the kernel:

〈
∂A

∂xi

〉
a

=
∑

b

Vb(Ab −Aa)
∂

∂xi
W (xa − xb, h) (2.5)〈

∂2A

∂xi∂xj

〉
a

=
∑

b

Vb(Ab −Aa)
∂2

∂xi∂xj
W (xa − xb, h) (2.6)

The symmetric term(Ab −Aa) in the sum is introduced for numerical reasons.

2.1.2 Evaluation Based on Initial Positions

In order to secure the convergence of the SPH method, the particle map must be regu-
lar. One way to ensure this is by using remeshing, as seen in [7].

In the scope of this semester thesis, a simpler approach was chosen: particles carry
both an initial, Lagrangian, positionξ as well as the current, Eulerian, positionx(ξ, t).
These are related through

x(ξ, t) = ξ + d(ξ, t) (2.7)

, whered(ξ, t) is called the displacement of the particle.

For evaluating the constitutive model, Eqs. (2.1) and (2.5) are calculated based on
the initial positions of the particles. Since these are initialized on a regular map and
don’t change over time, the above condition is ensured at all times.

2.1.3 Visualization of the surface

As described in the previous thesis [4], the marching cubes algorithm is used to derive
an iso–surface from the particles. It is based on the massmb, which is chosen to be
mb = Vbρinit. The initial densityρinit is assumed to be1. Together with Eq. (2.1)
this yields Eq. (2.8)—which uses the current positionsx as opposed to the actual
simulation.

ρ(x) =
∑

b

mbW (x− xb, h) (2.8)

Since the smoothness of the kernel is a minor issue in the computation of the iso–
surface, a simplified kernel (2.9) was used for performance reasons. It has the same
order asM5.

W (x, h) =
1
h3

(1− ‖x‖
h

) (2.9)

2.2. GOVERNING EQUATIONS AND PARTICLE DISCRETIZATION 5

2.2 Governing Equations and Particle Discretization

As in [7], the mechanical behavior of soft biological tissue is modeled as a linear vis-
coelastic material for small strains. The governing equation is the momentum equation,

ρ
Du
Dt

= ∇ · σ + fext (2.10)

For simplicity’s sake, the particles’ densityρ is assumed to be1 and the divergence
is taken with respect to the initial positions.D

Dt denotes the material derivative

D

Dt
=

∂

∂t
+ u · ∇ (2.11)

dx
dt

= u (2.12)

whereu is the velocity.

fext is an external body force—a simple gravitational force was used here.σ is the
Cauchy stress tensor. It depends on the constitutive model of the material used. The
solid model is based on the generalized Hooke’s law [3] and is extended by the Kelvin–
Voigt damping model [8]. This results in the componentsσij of the stress tensorσ to
depend linearly on the componentsεij of the Cauchy Green strain tensorε,

σij = 2µ(εij + T ε̇ij) + λδij(εkk + T ε̇kk) (2.13)

The indiciesi, j, k = 1, 2, 3 follow the Einstein’s summation convention andδij is
the Kronecker symbol. The time constantT is the relaxation time used for the damping,
andµ andλ are the Lame constants,

µ =
E

2(1 + ν)

λ =
νE

(1− 2ν)(1 + ν)
(2.14)

whereE represents the Young’s modulus andν the Poisson’s ratio.

The componentsεij of the strain tensor are linearly dependent on the spatial deriva-
tive of the displacementd,

εij =
1
2

(
∂di

∂ξj
+

∂dj

∂ξi

)
(2.15)

Putting Eqs. (2.10), (2.13) and (2.15) together for a particlep with dp = xp − ξp
results in Eqs. (2.16)–(2.18).

6 CHAPTER 2. PARTICLE METHOD APPROACH

Du1

Dt
= (2µ + λ)

∂2d1

∂ξ2
1

+ λ
∂2d2

∂ξ1∂ξ2
+ λ

∂2d3

∂ξ1∂ξ3
(2.16)

+ µ(
∂2d1

∂ξ2
2

+
∂2d2

∂ξ1∂ξ2
) + µ(

∂2d3

∂ξ3∂ξ1
+

∂2d1

∂ξ2
3

)

+ T
(
(2µ + λ)

∂2u1

∂ξ2
1

+ λ
∂2u2

∂ξ1∂ξ2
+ λ

∂2u3

∂ξ1∂ξ3

+ µ(
∂2u1

∂ξ2
2

+
∂2u2

∂ξ1∂ξ2
) + µ(

∂2u3

∂ξ3∂ξ1
+

∂2u1

∂ξ2
3

)
)

Du2

Dt
= λ

∂2d1

∂ξ1∂ξ2
+ (2µ + λ)

∂2d2

∂ξ2
2

+ λ
∂2d3

∂ξ2∂ξ3
(2.17)

+ µ(
∂2d1

∂ξ2∂ξ1
+

∂2d2

∂ξ2
1

) + µ(
∂2d2

∂ξ2
3

+
∂2d3

∂ξ2∂ξ3
)

+ T
(
λ

∂2u1

∂ξ1∂ξ2
+ (2µ + λ)

∂2u2

∂ξ2
2

+ λ
∂2u3

∂ξ2∂ξ3

+ µ(
∂2u1

∂ξ2∂ξ1
+

∂2u2

∂ξ2
1

) + µ(
∂2u2

∂ξ2
3

+
∂2u3

∂ξ2∂ξ3
)
)

Du3

Dt
= λ

∂2d1

∂ξ1∂ξ3
+ λ

∂2d2

∂ξ2∂ξ3
+ (2µ + λ)

∂2d3

∂ξ2
3

(2.18)

+ µ(
∂2d1

∂ξ3∂ξ1
+

∂2d3

∂ξ2
1

+ µ(
∂2d2

∂ξ3∂ξ2
) +

∂2d3

∂ξ2
2

)

+ T
(
λ

∂2u1

∂ξ1∂ξ3
+ λ

∂2u2

∂ξ2∂ξ3
+ (2µ + λ)

∂2u3

∂ξ2
3

+ µ(
∂2u1

∂ξ3∂ξ1
) +

∂2u3

∂ξ2
1

+ µ(
∂2u2

∂ξ3∂ξ2
+

∂2u3

∂ξ2
2

)
)

Eqs. (2.16)–(2.18) can now be discretized using SPH—the spatial derivatives of
the displacement based on the initial position can be calculated exactly using Eq. (2.6).
As the displacement is by means of Eq. (2.7) only dependent on current and initial
positions, this also defines the set of attributes needed per particle:

• Current positionx(ξ, t)

• Initial positionξ

• Initial volumeVinit

Since the evaluation of the Eqs. (2.16)–(2.18) is based on initial positions,u is 0 at
all times, and the material derivative of Eq. (2.11) turns into a standard time derivative.

2.2.1 Integration Method

Integration of the particles is done using a third order Beeman integrator [1].

u(t + δ) = u(t) + δ(
5
3
a(t) +

2
3
a(t− δ)− 1

12
a(t− 2δ)) (2.19)

x(t + δ) = x(t) + δ(u(t) +
2
3
a(t− δ)δ − 1

6
a(t− 2δ)δ) (2.20)

2.3. BOUNDARY CONDITIONS SOLVED BY GHOST PARTICLES 7

Note that this scheme only uses one evaluation of the functional (2.16)–(2.18) per
time–step, as opposed to methods like Runge–Kutta. However, to obtain a higher or-
der, the integration is based on an interpolation of the acceleration in time. This means
that sudden changes in the topology (e.g. by cutting or pushing particles) can result in
instabilities.

However, as the cutting simulation is supposed to work in real time, this integration
scheme is used whenever possible. A simpler Euler–Cromer integrator, seen in Eqs.
(2.21)–(2.22), is used temporarily when the particles are subject to sudden changes, as
well as to to initialize Eqs. (2.19)–(2.20) at the beginning of the simulation.

u(t + δ) = u(t) + a(t)δ (2.21)

x(t + δ) = x(t) + u(t + δ)δ (2.22)

2.2.2 Cell Lists

The kernel from Eq. (2.3) has a limited support. Thus, when evaluating the superpo-
sition of Eq. (2.1), the sum only has to be calculated over a local neighborhood of the
current particle.
This is done using cell lists, i.e. the particles are sorted into a regular grid depending
on their initial position. The size of the cells is chosen in such a way that the26 direct
neighbors of a cell are within the kernel’s support radius.
Given a specific particle, one can easily determine the cell it is located in, and then
evaluate Eq. (2.1) only using the particles located in the neighboring26 cells—instead
of taking all particles into account. Depending on the support radius of the kernel, this
can give an immense speed–up.

Section4.1.3 deals with the actual implementation, and how new functions can
easily be defined to take advantage of cell lists.

2.3 Boundary Conditions Solved by Ghost Particles

In order to solve Eqs. (2.16)–(2.18), one needs to know both the initial state of the
variables, as well as the boundary conditions on the spatial edge of the domain. Two
different types of boundaries are considered.

• Fixed boundaries, used to clamp a material, enforce a given displacement at the
boundary.

• Stress–free boundariesare boundaries where the surface traction is0.

2.3.1 Ghost Particles

In the scope of this thesis, a discretization of these boundary conditions using ghost
particles (or short, ghosts) is used, inspired by [10].
Ghosts are particles residing outside of the actual domain. They are purely passive
particles that don’t evolve. However, ghosts are accounted for in the superposition of
Eq. (2.1). Furthermore, while they have a specific initial positionξ, their displacement
d is adjusted on the fly depending on the particlea whose field is currently calculated.

8 CHAPTER 2. PARTICLE METHOD APPROACH

The displacementd of the ghost is dependent on both the boundary condition and the
particlea whose field is calculated.

The advantage of this method lies in its efficiency, since it circumvents the need of
one–sided differentiation.

In the following sections, the displacement field for a particlea is calculated. Its
displacement is denoted asda. Similarly, g denotes a ghost particle, withdg being its
displacement.
As a simplified organ, a cube was chosen. Ghost particles are added in layers around
the cube, where the number of layers needed is determined by the support radius of the
kernel.

2.3.2 Fixed Boundary

The goal of a fixed boundary is for the displacement field to have a given value at a
specific position. Since particles aren’t actually located on the boundary, the idea is
obtain the desired displacement by adapting the ghost particles outside of the domain
accordingly.
During the calculation of the Eqs. (2.16)–(2.18) for a particlea, whenever a fixed
boundary ghost particleg is consulted for the calculation,dg is linearly extrapolated
such that the displacement on the boundary corresponds to the specified value.

For instance, if the material is clamped to a horizontaly − z plane at position
ξplane, with a displacement ofdboundary, one obtains Eq. (2.23). ξ andξa denote the
x component of the initial position.
Figure2-1shows a one–dimensional equivalent.

dg =
ξg − ξa

ξplane − ξa
(dboundary − da) + da (2.23)

2.3.3 Stress–free Boundary

On a stress–free boundary, one has to ensure that the displacement quantities remain
constant, such that no force acts on the surface. The stress–free boundary ghosts be-
have like a passive, unstretched material that is glued to the actual soft material.

This is accomplished by linking each ghost particle to an actual particle on the
boundary of the domain, called neighbor. Wheneverg is consulted,dg takes the dis-
placement of this neighbor.

dg = dn (2.24)

Figure 2-2 shows how ghost particles are linked to actual material particles for
different boundaries. Note that for the third case, it is not clear whatg should adjust
to when considered during the calculation of particled. Best results were achieved by
using an average ofg’s two orthogonal neighborsa andb.

2.3. BOUNDARY CONDITIONS SOLVED BY GHOST PARTICLES 9

d

ξξ

dboundary

plane

Figure 2-1: Fixed boundary using ghost particles in 1D

g

g

n

a

bd

Figure 2-2: Stress–free boundary using ghost particles

10 CHAPTER 2. PARTICLE METHOD APPROACH

Chapter 3

Virtual Cutting

The central part of this semester thesis was to investigate approaches to cut objects
within the SPH model. In this chapter, two approaches are described. Both rely on
a technique similar to the ghost particles used to solve the stress–free boundary con-
ditions. First, a description of this technique is given, followed by the two actual ap-
proaches.
The last section describes the implementation into the graphical user interface of the
surgery simulation provided by [4].

3.1 Basic Idea

For a stress–free boundary, a ghost particle has one possible neighbor it adapts to.1

However, if there is a cut between two particles, a new stress–free boundary is created
betweenthe two. Thus, when describing a cut via ghost particles, such a ghost has
at least two neighbors, as seen in figure3-1. In the following,N denotes the set of
neighbors for a ghost particle.

a

g

Figure 3-1: Ghost particles in a cut

1Disregarding the third case of figure2-2, the solution to which has been introduced along with this
technique.

11

12 CHAPTER 3. VIRTUAL CUTTING

The setN of a ghost particle is defined by the cut.

When such a ghost is considered during the evaluation of Eqs. (2.16)–(2.18) for
a particlea, the displacement from the best neighbor is considered. To determine the
best neighbor, two normalized directions are defined: first, the vector from the ghost
particleg to the particlea, seen in Eq. (3.1). The set of direction vectors from the ghost
particle to its neighbors is defined by Eq. (3.2).

d1 =
ξa − ξg
‖ξa − ξg‖

(3.1)

d2n =
ξn − ξg
‖ξn − ξg‖

, for all n ∈ N (3.2)

Upon evaluating the constitutive model for particlea, the ghostg chooses the neigh-
bor maximizing the dot product of Eqs. (3.1) and (3.2).

m = arg max
n∈N

d1 · d2n (3.3)

If there is no clear maximum (i.e., two or more neighbors have the same dot prod-
uct up to an additive factorε), the displacements of the corresponding neighbors are
averaged. See the following sections for examples when this is necessary.

3.2 Cutting by Converting Particles

A first approach for cutting is to convert particles inside the scalpel into ghost parti-
cles and add links to their immediate neighbors. Figure3-2shows an examples for the
two–dimensional case:
The red particlep to be cut is converted into a ghost particle in a first step. This means
that a new stress–free boundary is created for all of its nearest neighbors, to which it is
thus linked. Furthermore, the ghost particleg that previously keptp as a neighbor has
to search for a new set of neighbors, since it can’t adapt to a ghost particle.

(a) (b)

p

g

Figure 3-2: Cutting by converting particles

3.3. CUTTING BY SPLITTING PARTICLES 13

This yields the following algorithm when converting a material particlep to a ghost
particle:

1. Change type ofp to ghost particle.

2. Find immediate neighbors ofp.

3. For all ghost particlesg that had a link onp:

(a) Clear neighborhood ofg.

(b) Using cell lists, find nearest material particle(s), link them.

The immediate neighbors of step 2 are defined as the6 direct neighbors of the par-
ticle in all main directions. Extended, diagonal linkage was investigated as well but did
not yield better results with respect to stability.
Note that in step 3 (b), it’s possible to linkg to more than one actual particle, if the
distances are approximately the same. This is necessary for instance in case (b) of fig-
ure3-2. Here,g can adapt to either side of the cut, as desired.

As mentioned above, it can happen that Eq. (3.3) has no clear maximum—as al-
ready seen in case (c) of figure2-2. As an approximation, the averaged displacement
of the two most fitting neighbors is chosen. Numerical instabilities can ensue due to
this, making the use of damping necessary.

Obviously, volume is going to be lost when transforming material particles into
ghost particles. Introducing additional particles might be considered as a solution for
this. However, this is critical with respect to the regularity of the map.
Because of this, cutting by converting was only regarded in a first step. Cases with
conversion at fixed boundaries, or with kernels that have a larger support radius than
0.75h2—whereh denotes the particle spacing—were not considered.

3.3 Cutting by Splitting Particles

Another method is to treat particles that surround a cut ashybrid particles. Such parti-
cles can behave as material or ghost particles, depending on the situation. The idea is
to assume the cut to be between two such hybrid particles as opposed to at a particle
itself.
A cut is now defined by a cut surface, as described in section3.3.1.

When considering a hybrid particleh during the evaluation of the constitutive
model for a particlea, one has to check on which side of the cuth is located. If it
is on the same side asa, the ghost will behave just like a standard particle, otherwise, it
mirrors the displacement of the particle on the other side of the cut, thus behaving like
a ghost particle for a stress–free boundary. (compare figure3.3)

Contrary to before, where a ghost particle only has links to direct neighbors, a
hybrid particle keeps track ofeveryparticle it can be consulted by, and stores the ap-
propriate action to take. This is necessary as the condition of Eq. (3.3) can not be
used for diagonal cuts between the particles. Thus, each hybrid particleh has a list

2Equaling to the26 direct neighbors of a particle

14 CHAPTER 3. VIRTUAL CUTTING

a

s

ha

s

h

Figure 3-3: Cutting between particles using hybrid particles

of all its possible “invokers” (particles in the support radius of the simulation kernel),
containing the following fields:

• Reference to invokeri (particlea for which the superposition of Eq. (2.1) is
calculated).

• Action to be taken when invoked byi—this can either be none (h behaves like a
material particle with respect toi) or copy (h behaves like a ghost particle with
respect toi).

• A list of one or more reference particles that are used to copy the (possibly aver-
aged) displacement from.

When a hybrid particleh is considered in the superposition of Eq. (2.1), it checks
the list of invokers for the reference particlea, and then either returns its own displace-
ment, meanings it is on the same side of the cut asa, or returns an averaged sum of the
displacements of its reference particles (usually, only one).

In figure3.3, the hybrid particleh keeps a list of all the particles within its support
radius. These are all the particlesa that can consulth when calculating the superposi-
tion of Eq. (2.1).
For all the particles residing on the same side of the cuts ash (5, 7, 8), the action is set
to none, i.e.h behaves like a standard material particle. For the other particles,h will
return the displacement of the particles indicated by the arrows. Thus,h will behave
like a stress–free boundary in x–direction for particles 4 and 6, and like a stress–free
boundary in y–direction for particles 2 and 3. For the outer edge particle 1,h will
mirror itself, corresponding to case (b) of figure2-2.
The information for the invokers is obtained in step 4 of the algorithm presented in
subsection3.3.2.

3.3. CUTTING BY SPLITTING PARTICLES 15

6

4

2 31

8

5

766

44

2 31

88

55

7

h

Figure 3-4: Hybrid particleh and its possible invokers

3.3.1 Cut Surface

The cut surface is defined as the surface that separates two parts of an object that are to
be splitted [5]. It is inferred from the movement of the scalpel, as can be seen in figure
3-5.

a

b

Figure 3-5: Cut surface defined by scalpel

While cutting, the algorithm has to decide which particles are to be separated by
the cut surface. To simplify this calculation, the cut surface is assumed to be planar and
rectangular.
The virtual surgery framework [4] does not support translation and rotation of the
scalpel at the same time. In this thesis, only the generation of cut surfaces by transla-
tion is supported, but the addition of the rotation should not entail any major changes.
Due to the way translation is handled by the framework, the cut surface can only be a
parallelogram.

Thus, the cut surface is defined by two vectorsa andb, as well as a positionx.
For a, the cutting edge of the scalpel is chosen.b is defined asb = x2 − x1, where
x1 denotes the start point andx2 the end point of cutting. These are obtained from the
position of the scalpel at two subsequent time–steps.

16 CHAPTER 3. VIRTUAL CUTTING

Botha andb are assumed to be of unit length.

To test whether a particlea with positionx resides at the cut surface, it is projected
onto the surface using the dot product. That is, if both(x − x1) · a and(x − x1) · b
are within the bounds specified by the cut surface’s size, particlea is affected by the cut.

To guarantee the condition of having a rectangular planar surface, two measures
were taken: first, new cut surfaces are generated after large enough movements (mean-
ing the spacing of the particlesh). Second, the parallelogram is approximated by a
rectangle by means of Eq. (3.4) is used forx2. Refer to figure3-6 for a graphical
explanation.

x2a = x2 − (a · (x2 − x1))a (3.4)

a

x2
x2a

2
x1 1a(x - x)

b

Figure 3-6: Graphical explanation of Eq. (3.4)

As the scalpel usually has only one main direction of moving, and cut surfaces can’t
become too large, Eq. (3.4) hardly impacts the results.

For the cutting process, the collision detection routine presented in [4] is used to
check whether the scalpel is inside the organ. If this is the case, cut surfaces are gener-
ated as described above and stored in a list. This list is then handled as soon as possible
by the actual simulation.

Note that the separation of the particles using the cut surface can either be based
on the initial positionsξ or the current positionsx(ξ, t). The disadvantage of the for-
mer is that the cut performed by the user is not reflected exactly in the material. The
latter however can entail problems when the particles move heavily while moving the
scalpel. This could result in particles being left out from the cut.
Thus, in the current version, cutting is done based on the particles’ initial positionsξ.

Another note concerns the size of the time–step between sampling the positions
of the scalpel. A too large time–step can introduce heavy lags for the user. On the
other hand, a too small time–step can not only impact performance, but also affect the
detection of diagonal edges. Two measures were taken: first, a cut surface is issued
when the scalpel moves by an amount larger thanh

√
3, whereh denotes the particles’

3.3. CUTTING BY SPLITTING PARTICLES 17

spacing. Second, cut surfaces are chosen to overlap, i.e. if for the first cut surface,
b = x2 − x1, the second cut surface will encompassb = x3 − x1 + 1

2 (x2 − x1).
This improves detection of diagonal edges without introducing too large artefacts into
the cut surfaces.

3.3.2 Splitting the Particles

The following summarizes the algorithm that is used to infer the linking information
from the cut surface. Only the current cut surface is considered—previous cuts are
inherent in the hybrid particles, as they keep track of what to do for their invokers.

1. Find particles whose projection fall into the cut surface, discarding particles that
are farther away than the kernel’s support radius.

2. Sort particles into two setsA andB, depending on the side of the cut surface
they are.

3. Find subsetsAmin andBmin of particles that are nearest to the cut surface—
these define the actual cut in the material.

4. For each particlea ∈ A

For each particles within particlea’s support radius, check parti-
cles with respect to the cut surface.

• Not at the cut surface or on same side as particlea: the relation-
ship between the particless anda doesn’t change.

• On other side of cut surface: particles has to act like a ghost
particle with respect to particlea. Thus:

(a) If s is not yet a hybrid particle, convert particles into a hy-
brid particle.

(b) Find nearest neighbor of particles on particlea’s side of cut,
n ∈ Amin.

(c) As an action when invoked by particlea, particles takes the
displacementdn of particlen, i.e. behaves like a stress–free
boundary particle.

5. Do the same for each particleb ∈ B

Finding Edges

If two subsequent cuts are orthogonal to each other, something as seen in figure3-7
can happen: even though the link information should represent an edge, the diagonal
links are missing. This can result in instabilities in the simulation. To prevent this, the
following algorithm is run over all particles after issueing a cut. Its goal is to find a di-
agonal edge when a particle has to adapt to two or more neighbors that are orthogonal
with respect to to the particle whose field they mirror. This is the case for particlea in
figure3-7.

For each particlea ∈ Amin ∪ Bmin

1. Build setS of ghost particles with respect toa.

18 CHAPTER 3. VIRTUAL CUTTING

2. For each combination of two or three ghost particlesg1 . . . g3 ∈ S

(a) Check that the particlesg1 . . . g3 behave as ghosts to the same particle, i.e.
take the displacement from the same reference particler.3

(b) Find diagonal particleh with positionx = x(n1) + x(n2) − x(a) or x =
x(n1) + x(n2) + x(n3) − 2x(a).

(c) Convert particleh into a hybrid particle.

(d) h has to behave like a ghost particle with respect to particlea, thush has to
take the displacementdr of particler when invoked by particlea.

(e) If the behavior of particlea is undefined for particleh, particlea should
behave like an inner edge for particleh, i.e. particlea has to average over
the displacements of the ghost particlesg1 . . . g3 when invoked byh.

(a) (b)

a g2

g1 d

Figure 3-7: Finding edges

Stress–free boundary ghost particles

Actual stress–free boundary ghost particles are only indirectly affected by the cut, and
thus will keep their neighbor at all times. That is, they behave exactly like their neigh-
bor, and thus also adapt to cuts automatically when their neighbor becomes a hybrid
particle.
This also applies to ghost particles in inner edges that have more than one neighbor:
they return an averaged sum of the displacements of their hybrid neighbors.

3This usually isa, but doesn’t have to be: consider figure3-7. Assume thatg1 andg2 lie in the same
z–plane, but not in the same asa. r, however will lie in the same plane asg1 andg2, sharing the x and y
coordinates witha.

Chapter 4

Implementational Issues

This chapter contains a few notes concerning the implementation of the algorithms.
First, an overview of the most important classes is given. Next, the implementation of
cell lists is described, with a focus on how to define new functions to operate on them.
Finally, a performance improvement for the marching cubes algorithm is presented.

These descriptions concern the implementation for cutting by splitting, i.e. func-
tions for converting are not included here due to the very different nature of the algo-
rithms.

4.1 Class overview

4.1.1 Particle

The classParticle is an integral part to the simulation. It keeps track of the variables
needed for the physically–based simulation, boundary conditions as well as displaying
of the particles. The functions and variables offered by the class can be divided into six
parts.

• Simulation. The variablesx(ξ, t), ξ andVinit are the attributes of the particle.
Furthermore, this also includes variables for the acceleration at the current and
previous two time steps for Eqs. (2.19)–(2.20).
Also, to support the improvement for the marching cubes algorithms, a threshold
for a change flag can be set usingsetEpsChanged —when the change in position
is larger than this,getChanged will return true . UseupdatePosOld to reset the
changed flag.

• Integration . Particle offers both a functionintegrate and integrateEuler

to advance a particle according to Eqs. (2.19)–(2.20) and (2.21)–(2.22), respec-
tively.

• Invokers. An auxiliary class,ParticleInvoker defines the invokers for a hybrid
particle. As described in section3.3, when considered by a particlea, the hybrid
particle will search the list of its invokers fora, and then perform the action con-
nected with it.
Besides the functions to manage the set of invokers, the important ones for the

19

20 CHAPTER 4. IMPLEMENTATIONAL ISSUES

simulation aregetDisplacement andgetVelocity , which adjust the hybrid par-
ticle according to the invoker.

• Neighbors. For a stress–free ghost particle, a neighbor is a material particle
inside the domain. In most cases, there is just a single neighbor, unless the ghost
particle is situated in an inner edge (compare the third case of figure2-2). Upon
evaluation of a ghost particle, these neighbor(s) are consulted.

• Fixed boundaries. For fixed boundary ghost particles, the functionssetXPos

andsetBorderDisplacement can be used to define a fixed boundary in they− z
plane.

• Coin3D. Each particle also can hold a Coin3D data structure for it to be dis-
played as particle sphere. To initialize this data structure, the functioninit has
to be called. To update the structure according to the particle’s current position,
userender . A color for the particle can be specified as well by using the function
setColor .
Use the#define statementCOIN3D to include parts pertaining Coin3D in the
compilation.

4.1.2 ParticleList

One of the most important classes in the simulation is theParticleList class. It holds
the set of all particles needed for the simulation, and contains functions for traversing
all particles or a neighborhood of a given particle. The latter takes advantage of cell
lists for increased performance.
Again, the functions can be divided into five sections.

• Particles. These are auxiliary functions to operate on single particles, including
makeHybrid , which transforms a material particle into a hybrid particle, adding
links to all particles within the support radius.findParticle can be used to find
a particle according to its initial position.

• Traversal. Functions for traversing the entire list of particles with a functional
operator are provided. Please refer to section4.1.3for a detailed description.

• Cutting . cutBetween will insert a cut in the particles, according to the algorithm
given in3.3.

• Integration . Functionsintegrate and integrateEuler are provided to inte-
grate the entire list of particles. Note that theintegrate automatically changes
between Beeman and Euler–Cromer integration scheme if the topology changed
(flag topologyChangeCount , e.g. modified bycutBetween).

• Visualization. On one hand, the functiongetSpheres will return a Coin3D sep-
arator with spheres for all particles. On the other hand, the functionsgetDensity

andgetChangedDensity can be used to calculate the density at a given location,
needed for the marching cubes algorithm. Latter depends on thegetChanged

function of theParticle class introduced before.

4.1. CLASS OVERVIEW 21

4.1.3 Actions on all particles

To apply a function to a set of particles, the abstract classParticleAction was defined.
Its idea is to decouple the actual algorithm from the particle list data structure. Any
descendent of this class can be passed to the traversal functions of theParticleList

class, which will then apply the functional operator to each particle.

class ParticleAction {
public :

ParticleAction() { }
virtual ~ParticleAction() { }

// Applies the collected data to a particle
virtual void apply(Particle& p) = 0;

// Sets a reference particle
virtual void setRef(const Particle* p) = 0;

// Resets the aggregation variables
virtual void reset() = 0;

// Executes an action on the particle
virtual void operator ()(Particle& p) = 0;

};

Here is a quick rundown on how Eqs. (2.16)–(2.18) is evaluated using a descendant
of ParticleAction , ParticleForce :

1. Set a reference particlea usingsetRef .

2. Invoke ParticleList ’s forParticleNeighborhood with a as parameter. This
will then apply the functional operatoroperator () to the entire neighborhood of
a, summing up the field into private variables of theParticleForce class.

3. Call apply , again witha as parameter. This applies the aggregated value (i.e.
the force) to the particle. The particle can the update its position using Eqs.
(2.19)–(2.20).

TheParticleList class actually offers a functionforEachDoForce that combines
the three above steps and applies them toeveryparticle in the list.

After that, a call to theintegrate method ofParticleList will update all particle
positions.

4.1.4 Other classes

This is a quick overview of the other classes written within the course of this semester
thesis. Most are based onParticleAction .

• DisplayKernel . Class that contains the kernels that can be used for the calcula-
tion of the iso–surface, containing the kernel of Eq. (2.8), among others.

• Knife . Definition of the knife / cut surface, including functions for setting the
distance (distance) and whether a particle projected onto the surface falls within
the given bounds (inside andsetBounds)

• ParticleContainsNeighbor . Checks whether the list of neighbors of a particle
contains another particle.

22 CHAPTER 4. IMPLEMENTATIONAL ISSUES

• ParticleDisplay . Update the color field of a particle sphere according to its
velocity.

• ParticleIndex . Given a vector of particles, this class converts between the index
of an element and the reference to the element.

• ParticleInvoker . Defines a possible invoker for another particle.

• ParticleLink . Update link information of particles according to cut surface.

• ParticleNearest . Find particles nearest to another particle. This is used for
linking stress–free boundary ghosts and for cutting by converting.

4.1.5 Integration into user interface

Integration into the user interface is done using callbacks—seecallbacks.cpp .

The simulation itself runs in an idle callback. Here,forEachDoForce is invoked us-
ing an instance ofParticleForce , followed byParticleList ’s integrate function.
A call to updateOrgan will then update the organ’s surface.

A list of cut surfaces is kept inCutSurfaces , these are handled usingcutBetween .

Cut surfaces are generated by the functionscutter andissueCutSurface , with the
help of insideOrgan . This is done according to the description in section3.3.1.

4.2 Marching Cubes

As described in the preceding semester thesis [4], the marching cubes algorithm is used
to generate an iso–surface based on the density distribution described by Eq. (2.8).

Note that Eq. (2.8) is based on the Eulerian coordinates. Since these change after
each step of the simulation, the surface has to be recalculated as well, which poses a
heavy computational load on the CPU, both the evaluation of Eq. (2.8), as well as the
marching cubes algorithm itself.

However, since usually only particles near to the cut are moving considerably, Eq.
(2.8) is only recalculated for those particles whose change in location is significant.

Furthermore, calculation of is also sped up considerably by using cell lists—this
can however yield artifacts due to largely displaced particles, since the cell lists are
based on the initial position.

Chapter 5

Results

In this chapter, some experimental results are presented, followed by a performance
test of the surgery simulator.

5.1 Experimental Results

The following two subsections contain a few examples of the cutting algorithms. For
all examples, the same basic setup is chosen:
The particles are arranged in a cube with9×9×9 particles and an additional margin of
2 ghost particles on all sides, resulting in2197 particles in total. The kernel’s support
radius is0.75h, thus involving only the26 direct neighbors of a particle.
The cube is prestretched along the x–axis (denoted by the two quads in the pictures),
with a small displacement ofd(x) = 0.1x. The other boundaries are stress–free.
The time–step of the simulation is chosen to be0.01.

For the visualization, the kernel’s support radius ish, and the marching cubes’
resolution is set to20× 20× 20. The iso–value of the iso–surface is set to0.8, as1 is
the maximum due to the assumptionρ = 1.

5.1.1 Cutting by Converting

Figure5-1 showcases the process of cutting by converting particles. An incomplete
perforation of the cube is done along the z–axis. Two particles are left untouched. As
material properties, the following settings were used:

• Poisson’s ratioν = 0

• Young’s modulusE = 1

• Relaxation timeT = 0.01

• Gravity coefficient =0

As expected, volume is lost at the location of the perforation. However, the hole
doesn’t collapse in itself, due to the stress–free boundary ghosts replacing the original
material particles. The simulation stays stable, even with a low relaxation time of
T = 0.01.

23

24 CHAPTER 5. RESULTS

Figure 5-1: Cutting by converting particles

5.1.2 Cutting by Splitting Particles

Two examples are presented for this case. First, figure5-2demonstrates the process of
cutting the cube apart along the z–axis. The material properties used were:

• Poisson’s ratioν = 0.3

• Young’s modulusE = 0.7

• Relaxation timeT = 0.2

• Gravity coefficient =0.1

Note the higher relaxation time—this is due toν > 0.
The cube is separated nicely due to the clamping of the material, and the simulation
stays stable. At an optimization level ofO2, the simulation ran at about 17 frames per
second.

Another example involves a diagonal cut on the surface, seen in figure5-3. Con-
trary to the cut before, this is not very symmetrical. Still, the simulation stays stable
and produces the expected results. However,ν is set to0 to increase the visibility of
the diagonal cut. Thus,T is lowered again as well. Again, about 17 frames per second
were achieved in the simulation.

• Poisson’s ratioν = 0

• Young’s modulusE = 1

• Relaxation timeT = 0.1

• Gravity coefficient =0.1

5.2 Performance

All performance tests were conducted on a Pentium 4 machine with 3 GHz. The setup
was exactly the same as in the previous section. Compilation of the code was done

5.2. PERFORMANCE 25

Figure 5-2: Cutting by splitting particles—vertical cut

with optimization in force (-O1 1).
To statistically even out the overhead used by the initialization, the simulation was run
for 2′000 timesteps. No cutting was performed. Table5-1 shows the first few lines
of output of the GNU profiling programgprof . Red lines pertain the displayal of the
iso–surface, green lines the actual simuluation.

In the profile of table5-1, most of the time is spent ingetDensity . This is due to
the fact that the iso–surface is recalculated completely in every time step and involves
8000 evaluations of Eq. (2.8), as opposed to Eqs. (2.16)–(2.18), which are only eval-
uated729 times. The marching cubes routines also take a fair share of the running time.
Thus, a possible improvement is to update the organ’s surface only every2 or3 timesteps,
which can be seen in table5-2 for every third timestep.

1Higher values did not work with the profiler. Still, -O2 showed a considerable improvement over -O1:
17 FPS instead of 10 FPS were possible for the example given in table5-1.

26 CHAPTER 5. RESULTS

Figure 5-3: Cutting by splitting particles—diagonal cut

% Self Calls Selfµs Totalµs Name
time sec / call / call

70.89 105.50 16008000 6.59 6.59 ParticleList::getDensity
22.58 33.60 206188000 0.16 0.17 ParticleForce::operator()
2.15 3.20 2002 1598.40 1598.40 MarchingCubes::calcPoints
1.26 1.87 1458000 1.28 25.75 ParticleList::fPNE2

0.75 1.11 37908000 0.03 0.03 Particle::getDisplacement
0.65 0.96 37908000 0.03 0.03 Particle::getVelocity
0.61 0.91 2000 455.00 53293.59 MyUserData::updateOrgan
0.38 0.56 2002 279.72 279.72 MarchingCubes::calcGradients
0.16 0.24 2002 119.88 119.88 MarchingCubes::calcIndexes
0.13 0.20 1456542 0.14 0.14 Particle::integrate
0.11 0.17 2001 84.96 89.96 Organ::loadData
0.09 0.13 idleCB
0.08 0.12 1458000 0.08 0.08 ParticleForce::apply
0.08 0.12 2000 60.00 18910.00 ParticleList::forEachDoForce
0.03 0.05 4538580 0.01 0.01 ParticleList::operator[]
0.02 0.03 1458000 0.02 0.03 ParticleForce::reset

Table 5-1: Profile (10.6 FPS)

Another method would be to use the performance improvement suggested in sec-
tion 4.2. In the test shown in table5-3, the iso–surface is updated in every timestep, but
only particles whose position is subject to a change larger than0.001 are recalculated.

5.2. PERFORMANCE 27

% Self Calls Selfµs Totalµs Name
time sec / call / call

46.19 35.45 5344000 6.63 6.63 ParticleList::getDensity
45.33 34.79 206188000 0.17 0.18 ParticleForce::operator()
2.68 2.06 1458000 1.41 26.64 ParticleList::fPNE
1.34 1.03 669 1539.61 1539.61 MarchingCubes::calcPoints
1.30 1.00 37908000 0.03 0.03 Particle::getDisplacement
1.29 0.99 37908000 0.03 0.03 Particle::getVelocity
0.44 0.34 667 509.75 53683.42 MyUserData::updateOrgan
0.43 0.33 669 493.27 493.27 MarchingCubes::calcGradients
0.25 0.19 1456542 0.13 0.13 Particle::integrate
0.22 0.17 669 254.11 254.11 MarchingCubes::calcIndexes
0.18 0.14 idleCB
0.08 0.06 668 89.82 89.82 Organ::loadData
0.07 0.05 1458000 0.03 0.03 ParticleForce::apply
0.07 0.05 2000 25.00 19500.00 ParticleList::forEachDoForce
0.04 0.03 1458000 0.02 0.02 ParticleForce::setRef
0.03 0.02 2916002 0.01 0.01 Vec3D::set
0.01 0.01 1575891 0.01 0.01 ParticleList::operator[]
0.01 0.01 1458000 0.01 0.02 ParticleForce::reset

Table 5-2: Profile with skipping of marching cubes (19.3 FPS)

% Self Calls Selfµs Totalµs Name
time sec / call / call

49.55 42.63 15992000 2.67 2.67 ParticleList::getChangedDensity
39.15 33.68 206188000 0.16 0.17 ParticleForce::operator()
3.86 3.32 2002 1658.34 1658.34 MarchingCubes::calcPoints
2.09 1.80 1458000 1.23 25.53 ParticleList::fPNE
1.24 1.07 37908000 0.03 0.03 Particle::getDisplacement
0.92 0.79 2000 395.00 21859.95 MyUserData::updateOrgan
0.79 0.68 37908000 0.02 0.02 Particle::getVelocity
0.64 0.55 2002 274.73 274.73 MarchingCubes::calcGradients
0.53 0.46 2002 229.77 229.77 MarchingCubes::calcIndexes
0.23 0.20 1456542 0.14 0.14 Particle::integrate
0.22 0.19 2001 94.95 94.95 Organ::loadData
0.19 0.16 idleCB
0.15 0.13 1458000 0.09 0.09 ParticleForce::apply
0.14 0.12 2000 60.00 18770.00 ParticleList::forEachDoForce
0.12 0.10 16000 6.25 6.25 ParticleList::getDensity
0.07 0.06 4538580 0.01 0.01 ParticleList::operator[]
0.03 0.03 2916002 0.01 0.01 Vec3D::set
0.03 0.03 1458000 0.02 0.04 ParticleForce::reset

Table 5-3: Profile with performance improvement (12.8 FPS)

Note that the kernel used for the visualization, Eq. (2.8), is dependent on the dis-

28 CHAPTER 5. RESULTS

tance between particles, and thus involves the computationally expensive calculation
of a square–root function. A performance increase could be achieved by using another
display kernel that only depends on the squared distance. As a test, the square–root was
removed from the code for Eq. (2.8), and the test of table5-3 was repeated. While the
resulting image is unusable, less time is spent in the functiongetChangedDensity —
38.71 seconds instead of42.63, and the framerate increases from10.6 to about14–15
frames per second.

Yet another—and better—possibility to increase the performance of the visualiza-
tion is to only recalculate the iso–surface at grid points where the iso–value was within
certain bounds. This saves a lot of computation especially in the inside of the organ.
Still, as bigger changes can occur, the iso–surface has to be recalculated completely
after a certain number of time–steps.
This was tested for the iso–value of0.8. Grid points that yield a value within0.8 − ε
and0.8 + ε are recalculated in the next time–step, and every10 time–steps, the entire
surface is recalculated. Here,ε is chosen to be0.19. This yieds a considerable perfor-
mance improvement: compared to the profile in table5-1, only 54.29 instead of105.5
seconds are spent ingetDensity . The framerate reaches16 frames per second, and the
surface animates smoother than in the improvements suggested before.
The only disadvantage seems to be a slightly larger lag in the animation when cutting
the surface.

The simulation itself also takes a considerable amount of the execution time. As
-O1 introduces inlining of code fragments, some functions are not listed in the above
profiles, especially the time–consuming call toVec3D’s length() function, needed for
the calculation of the kernel. A solution here might be to tabulate the square–root func-
tion used inlength() , which would work especially well when considering only initial
positions in the evaluation of Eqs. (2.16)–(2.18), as was done in this semester thesis.

Lastly, a profile with a horizontal cut is presented in table5-4. Other than the cut,
the settings are equivalent to the one used for the profile from table5-1.

As expected, the framerate doesn’t drop considerably, since no modifications to the
topology have to be applied, as is the case with cuts in tetrahedral meshes. However,
significantly more time is spent in the routinesgetDisplacement andgetVelocity , as
each hybrid particle first has to look for the appropriate neighbor in a list. This could
be improved considerably by the use of a hash–table, for instance.

5.2. PERFORMANCE 29

% Self Calls Selfµs Totalµs Name
time sec / call / call

68.65 105.44 16008000 6.59 6.59 ParticleList::getDensity
23.16 35.57 206188000 0.17 0.20 ParticleForce::operator()
2.06 3.16 37908000 0.08 0.08 Particle::getDisplacement
1.78 2.73 2002 1363.64 1363.64 MarchingCubes::calcPoints
1.33 2.05 1459467 1.40 29.24 ParticleList::fPNE
1.22 1.87 37908000 0.05 0.05 Particle::getVelocity
0.53 0.81 2000 405.00 53193.61 MyUserData::updateOrgan
0.44 0.67 2002 334.67 334.67 MarchingCubes::calcGradients
0.29 0.44 2002 219.78 219.78 MarchingCubes::calcIndexes
0.16 0.24 1455084 0.16 0.16 Particle::integrate
0.11 0.17 2001 84.96 84.96 Organ::loadData
0.10 0.15 idleCB
0.07 0.10 2000 50.00 21418.55 ParticleList::forEachDoForce
0.06 0.09 1458000 0.06 0.06 ParticleForce::apply
0.01 0.02 4542054 0.00 0.00 ParticleList::operator[]
0.01 0.02 73720 0.27 0.27 ParticleLink::operator()
0.01 0.01 2916002 0.00 0.00 Vec3D::set
0.01 0.01 1458000 0.01 0.01 ParticleForce::reset

Table 5-4: Profile with diagonal cut (10.3 FPS)

30 CHAPTER 5. RESULTS

Chapter 6

Conclusion

In this semester thesis, a framework for virtual surgery was extended to support the
physically–based simulation of a solid material, later to become a biological mate-
rial. The material was modelled using the generalized Hooke’s Law, extended by the
Kelvin–Voigt damping model. In contrast to other publications, Smoothed Particle
Hydrodynamics (SPH) were chosen to discretize the partial differential equations. The
concept of ghost particles was used as an alternative to one–sided differentiation to
account for boundary conditions. Both fixed and stress–boundaries were considered.
With the particles arranged in a cube, we achieved a stable simulation of the material,
even with very low relaxation times.

Next, the concept of ghost particles for stress–free boundaries was extended to
support more than one neighbor. This allowed for ghost particles to reside between
multiple material particles and behave like a stress–free boundary for each of them.
This technique was used in a first approach for cutting the material by converting ma-
terial particles inside the scalpel into ghost particles. The algorithm developed for this
is only suited for small kernel radii, and has the major disadvantage that volume is lost
by converting particles.
In a second step, hybrid particles were introduced as particles that can behave both
like ghost and material particles, depending on the situation. Cut information was now
inferred from a cut surface, defined by the movement of the scalpel.

In both cases, sufficient damping is needed to obtain a stable simulation.

Both cutting algorithms work well and demonstrate the possibility to cut material
apart within the SPH framework. This has the major advantage that no changes to the
geometry of the computational elements has to be made, as it is the case with other
grid–based methods, like FEM.

31

32 CHAPTER 6. CONCLUSION

Chapter 7

Future Work

This semester thesis barely scratches the surface of the possibilities of a virtual surgery
simulator. While the algorithms developed within this thesis are promising, much more
attention to detail is needed for a realistic simulation.

7.1 Performance

The realism of the surgery simulation is heavily dependent on the number of particles
used, among others. This figure is limited by the currently available processing tech-
nology. For a realistic simulation, many more particles than the729 used above need
to be taken into account.

Performance is not only hindered by the actual evaluation of Eqs. (2.16)–(2.18), but
also by the marching cubes algorithm. For the former, a method like adaptive subdivi-
sion could already yield a noticeable increase in performance, since during the surgery,
only the few particles near to the cut move heavily. For the latter, a small performance
improvement is already presented in section4.2.

Ultimately, the goal would be to use point–based rendering, as presented in [11].
This method could directly rely on the particles, without the need of first creating an
iso–surface needed for the rendering of triangles. Still, normals of the point–based im-
age elements, called surfels, have to be calculated, and this type of rendering is not yet
supported by today’s graphics cards. Furthermore, many more particles (≈ 100′000)
would be needed as well to guarantee a smooth surface.

7.2 Physically–based simulation

For simplicity’s sake, the evaluation of Eqs. (2.16)–(2.18) is based on the particles’
initial positions. To base it on the current positions, remeshing has to be introduced,
as presented in [7]. Even though the link information for the cuts as presented here is
also based on the initial positions, this should translate well to remeshing. Possibly, a
re–evaluation of the algorithm according to the cut surfaces has to be done for this.

33

34 CHAPTER 7. FUTURE WORK

The cutting algorithms presented here have been developed with a kernel support
radius smaller than0.75h. If cutting by converting is still considered, changes have
to be applied to get it working for larger support radii. The algorithm for cutting by
splitting was already designed with a larger support radius in mind. Still, for inner
edges as seen in case (c) of figure2-2, more diagonal particles have to be considered
for a particle inside the edge. It is not quite clear on how to combine the displacements
of the ghost’s neighbors in these cases. Most likely, a weighted sum depending on the
distance will yield the best results.

For all the tests performed, the particles were arranged in a cube. When a general
surface needs to represented using the methods presented here, good care has to be
taken with respect to boundary conditions. Ghost particles have to be placed all around
the organ, with linking done accordingly to figure2-2. Again, larger support radii will
complicate things here.
The classParticleList already offers a functionlinkGhost that searches for the near-
est material particles of a ghost particle.

As for fixed boundaries, only they − z plane is supported. This needs to be gener-
alized. Furthermore, cuts at fixed boundaries are not taken care of so far. This should
be an easy extension of the cutting algorithm, involving a fixed ghost to behave like a
stress–free boundary ghost depending on the particle its invoked by.

Lastly, the model used for the tissue is not completely correct. One one hand,ρ was
chosen to1 as a simplification. On the other hand, a linear model is used. For a more
realistic simulation, this should be extended to a non–linear model. This would only
involve changes to theParticleForce class, and should have no impact whatsoever on
the cutting algorithm itself.

7.3 User interaction

The cutting process as presented here is rather rough. No matter how the scalpel is
moved through the organ, it will cut the tissue. In reality, different movements entail
different actions, compare [5]. Before cutting, there is the process of penetrating the
tissue. Movement orthogonal to the blade’s cut surface should not cut particles apart,
but rather push them in a direction. To achieve this, some kind of force feedback is
needed, since the user shouldn’t be able to push the scalpel through particles.

Last, the framework provided by [4] offers more instruments than just the scalpel.
These also need to be accounted for in future works.

Chapter 8

Contents of CD

This chapter gives a quick overview of the directory structure of the accompanying CD.

• Coin-2.2.1. Include files for Coin3D.

• CutBetween. The most current version of the surgery simulator, supporting the
algorithm for cutting by splitting presented here.

– CollisionControl . Files needed for the collision detection routine.

– data. Data for the Coin3D scene.

– draggers. Data for the draggers.

– GUI . Files for the graphical user interface developed in [6].

– images. Icons used by the graphical user interface.

– Libs. Shared libraries for Coin3D and SoQt.

– Movies. Directory movies will be stored in.

– Screenshots. Directory screenshots will be stored in.

– Simulation. Files for the actual simulation. This encompasses all files and
classes presented in chapter4.

• Improvement. Updated C files for the last improvement of the marching cubes
routines discussed in5.

• Presentation. The LATEXfiles for the presentation, including a few movies.

• Report. The LATEXfiles for this report.

• simage-1.6.0. SImage library needed for loading textures.

• VirtualSurgeryKDev . The KDevelop project used first. This support cutting
by converting, however, the algorithm used for cutting by splitting is not fully
developed at this stages and produces instabilities. As the approach of using Eq.
(3.3) was abandoned for cutting by splitting, this project is not up to date.

35

36 CHAPTER 8. CONTENTS OF CD

Bibliography

[1] D. Beeman. Some multistep methods for use in molecular dynamics calculations.
Journal of Computational Physics, 20:130–139, 1976.

[2] D. Bielser. A framework for open surgery simulation. http://e-
collection.ethbib.ethz.ch/show?type=diss&nr=14900, 2003.

[3] T.J. Chung. Applied continuum mechanics, 1996.

[4] S. da Silva. A virtual surgery environment, 2003.

[5] M. Gernss. Real–time interaction with tetrahedral meshes, 2004.

[6] I. Guajana. A graphical user interface for virtual surgery, 2004.

[7] S. Hieber, J.H. Walther, and P. Koumoutsakos. Remeshed smoothed particle hy-
drodynamics simulation of the mechanical behavior of human organs, 2004.

[8] G.A. Holzapfel. Nonlinear solid mechanics: a continuum approach for engineer-
ing, 2001.

[9] J.J. Monaghan. Smoothed particle hydrodynamics.Annual Review of Astronomy
and Astrophysics, 30:543–574, 1992.

[10] J.P. Morris, P.J. Fox, and Y. Zhu. Modeling low reynolds number incompressible
flows using sph.Journal of Computational Physics, 136:214–226.

[11] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as
rendering primitives.Proc. SIGGRAPH 2000, pages 335–342, July 2000.

22nd July 2004

37

	Introduction
	Particle Method Approach
	Smoothed Particle Hydrodynamics
	Spatial Derivatives
	Evaluation Based on Initial Positions
	Visualization of the surface

	Governing Equations and Particle Discretization
	Integration Method
	Cell Lists

	Boundary Conditions Solved by Ghost Particles
	Ghost Particles
	Fixed Boundary
	Stress--free Boundary

	Virtual Cutting
	Basic Idea
	Cutting by Converting Particles
	Cutting by Splitting Particles
	Cut Surface
	Splitting the Particles

	Implementational Issues
	Class overview
	Particle
	ParticleList
	Actions on all particles
	Other classes
	Integration into user interface

	Marching Cubes

	Results
	Experimental Results
	Cutting by Converting
	Cutting by Splitting Particles

	Performance

	Conclusion
	Future Work
	Performance
	Physically--based simulation
	User interaction

	Contents of CD
	Bibliography

