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Abstract

We present a novel particle Immersed Boundary Method to enforce
no-slip boundary conditions on complex geometries. A forcing term ap-
pearing in the momentum equation is evaluated on the boundary points
such that the no-slip boundary condition is fulfilled on the boundary. The
method applied to an isothermal compressible fluid is capable of approx-
imating the flow of incompressible medium at a Mach Number of 0.05.
The efficiency and accuracy of the method is demonstrated in several
benchmark problems in two and three dimensions involving flow past a
cylinder/sphere. The particle Immersed Boundary Method is shown to
be well suited for the simulations of anguilliform swimming.

1 Introduction

Biofluid dynamics is characterized by the interaction of elastic incompressible
tissue with viscous incompressible fluid. In some cases the elastic tissue is active,
like muscle, which means that it can act a source of mechanical energy. The
Immersed Boundary Method is both a mathematical formulation and a compu-
tational method for the biofluid dynamic problem. In the immersed boundary
formulation, the equations of fluid dynamics are used in an unconventional way,
to describe not only the fluid but also the immersed tissue with which it in-
teracts. In the computational scheme motivated by this formulation, the fluid
equations are solved on a fixed (Eulerian) cubic lattice, where elastic forces
are computed from a Lagrangian representation of the immersed elastic tissue.
The material points of the tissue move freely through the cubic lattice of the
fluid computation. The two components of this Eulerian/Lagrangian scheme
are linked by a smoothed version of the Dirac delta function, which is used
to apply elastic forces to the fluid, and to interpolate the fluid velocity at the
representative material points of the elastic tissue. This methodology has been



applied to the heart and its valves by Peskin [23] who introduced this method
within this context.

Fadlun and Verzicco et al. [9] proposed an immersed boundary method
for finite-difference methods where the velocity of fluid cells close the complex
boundary is interpolated linearly between the boundary and the neighboring
fluid cell. This method leads to second order accuracy and requires a accurate
distance-information to the boundary at the all neighboring fluid cells. Kim [19]
presented a similar approach for finite-volume methods combined with a mass
source to increase the accuracy.

These approaches, however, are limited to Eulerian methods for incompress-
ible flows. We present a novel particle Immersed Boundary method (pIBM)
that is applicable to Lagrangian particle methods, such as smoothed particle
hydrodynamics. The geometry of the body is described by Lagrangian points.
A forcing term is evaluated on the boundary points such that the no-slip bound-
ary condition on the body is fulfilled. The extrapolation of the forcing term onto
the neighboring particles involves high-order B-Splines kernel.

We demonstrate the performance of the pIBM on channel flow, flow past a
circular cylinder and sphere. We compare the characteristic numbers of the flow
for various Reynolds numbers with experimental and numerical results presented
in the literature.

2 Governing Equations
A system of differential equations govern the motion of a viscous, compress-

ible medium. The fundamental system describes the conservation of mass and
momentum. The conservation equations for a fluid are
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where 22 = 224 (4.V) (o) denotes the material derivative, p denotes the density,
u the velocity, p the pressure, 7 the shear stress tensor with the elements 7;; and
w the viscosity. x; are the components of the position, u; the components of the
velocity where Einstein’s summation convention must be taken into account.

The system of differential equations Eq.(1)-(3) is closed with the equation
of state for an ideal gas

p=pRT (4)

where R is the specific gas constant and T the temperature. We assume the
temperature 7' = T to be constant in space and time. The reference density is

Po-



The initial condition is described by a density and a velocity field. The
immersed boundary is governed by a no-slip boundary condition. The in-
flow boundary involves a prescribed inlet velocity and a homogenous Neumann
boundary condition for the pressure. At the outlet, we consider a prescribed
outlet pressure and a homogenous Neumann boundary condition for the velocity.

2.1 Definitions of Characteristic Numbers

The Reynolds number of the flow is defined as
Re = VR (5)

where p is the characteristic density of fluid, U the characteristic velocity, u
the dynamic viscosity. The characteristic length d is equal to the channel width
or the cylinder/sphere diameter depending on the considered problem.

The Mach number M is the ratio of the characteristic velocity U to the speed
of sound ¢y
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The drag coefficient is an important characteristic that is commonly used to
validate flow simulations. It is defined as
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where Fp, the drag force, is force acting on the body parallel to the main

stream direction and A the reference area. Similar to the drag coefficient the
lift coeflicient is defined as

Ca
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where F7,, the lift force, is the force acting perpendicular to the main stream.

The Strouhal number is defined as the dimensionless frequency of the shed-
ding vortices

Cr

St = %, (9)

where f is the vortex shedding frequency. This frequency can be obtained
using the Fast Fourier Transform of the lift coefficient.



3 Particle Presentation of Immersed Boundaries
3.1 Function and Gradient Approximations Using Parti-
cles

In the context of particle methods [5, 11, 3] a smooth approximation of a function
®(x) can be constructed by using a mollification kernel (. (x):

Box) = DAl = / B(y) ¢ (x — y) dy (10)

where € denotes a characteristic length of the kernel.
The kernel is said to be of order r when the following moment conditions [5]
are satisfied:

/Ce(x)dx =1, (11)
/xig;(x)dx =0 iffij<r—1, (12)
/|X|TCE(X)dX <o (13)

This mollified approximation ®.(x) can be discretised using the particle
locations as quadrature points and a particle approximation of the regularized
function is

N
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where x,, and v, denote the position and volume of the p-th particle, and
@, = ®(x,) the value at the p=1,---, N particle locations.

As discussed in [5] the error introduced by the quadrature of the mollified
approximation of ® can be distinguished in two parts as

O —dF = (B —Dx() + (@ — D) HC (15)

The first term in Eq. (15) denotes the mollification error that can be controlled
by appropriately selecting the kernel properties. The second term denotes the
quadrature error due to the approximation of the integral on the particle loca-
tions. The overall accuracy of the method [5] results in

||<I>—‘I’?||o7p < H(I)_q)enom + H(I)e _q)g|0,p
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where [|(.)[lop = (f ()" dx)l/p and r denotes the order of the first non-vanshing
moment of the kernel (. [5]. For equidistant particle locations m = oo and for
positive kernels such as the Gaussian, r = 2. Here for (. a quartic spline kernel




with second order of accuracy is implemented:
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The normalization value ngy depends on the dimension of the problem and is

computed as:
1

22 UiGe(x —x;)
ensuring the property of partition of unity for the particles. Kernels of arbitrary
order [1] are possible by giving up the positivity of the kernel function.

The error estimates reveal a very important fact for smooth particle approx-
imations. In order to obtain accurate approximations of the smooth particles
must overlap. Note that the moment conditions expressed by the integrals of the
mollifier functions are not often well represented in the case of discrete particle
sets. These moment conditions can be ensured by appropriate normalisations

[5]-
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(18)

3.2 Remeshing

A key aspect of the present method involves the use of a remeshing procedure.
In smooth particle methods, as discussed earlier, particles must overlap at all
times in order to guarantee the convergence of the method [6]. As it is shown
in [4] remeshing is equivalent to a regularisation of the particle description of
the advected quantities.

In this work remeshing is employed in order to regularize the distorted par-
ticle locations and to redistribute particle quantities accordingly onto a uniform
set of particles with the spacing h. The redistribution of particle quantities is
achieved using the 3rd order M'4 kernel [20] which in one dimension is expressed
as:

1—%4—ﬁ 0<s<1, 8:%
My(x,h) = % 1<s<2, . (19)
0 s> 2.

In higher dimensions the interpolation formulas are tensorial products of their
one-dimensional counterparts. Remeshing at complex boundaries requires a
normalization scheme of the remeshed quantities. The normalization scheme is
similar to the normalization that ensures the partition of unity (Eq. (18)).
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where Vieww = h? is the volume of the new particle. We redistribute the ex-
tensive properties of the particle that need to be conserved, namely mass and
momentum.

3.2.1 Particle Derivative Approximations

Particle approximations of the derivative operators can be constructed through
their integral approximations. This can be achieved by taking the derivatives
of Eq.(10) as convolution and derivative operators commute in unbounded or
periodic domains. This approximation is popular in particle methods such as
Smooth Particle Hydrodynamics (SPH) [21] where derivatives of a field quantity
® on a particle p are approximated in a conservative form as:

<8iq)>p - ;”q (®g — p) %Ce(xp — Xgq), (21)
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where v, is the volume of particle g. The normalization values ng,1,nq,2 of
a%g;(x) = nd,la%ig}(x) and %%CE(X) = nd72%mjg} (x) are chosen such that
the corresponding non-zero moment condition [8] is statisfied. The kernel of
Eq. (17) has its first three derivatives continuous allowing a smooth approxima-
tion of the spatial derivatives of ®(x). The computation of the right hand side of
the ODEs employs these formulas for the computation of derivatives as defined
in Eq.(1) - (3). An alternative formulation involves the development of inte-
gral operators that are equivalent to differential operators [8] as they were first
introduced for the integral approximation of the Laplacian [7] in the diffusion
equation.

3.3 Particle Immersed Boundary Method (pIBM)

In pIBM (Fig.1), a forcing term f is added to the momentum equation (Eq.(2)
) such that the no-slip condition is satisfied on the boundary.

Du

We approximate the material derivative by a differential quotient:

Uil — U

Di At =—-Vp;+ V.1 + f; (24)

Solving for f; and assuming we reach the desired velocity within this time step
(ui-i-l = udesired) ylelds

Udesired — Ui
fi= pi=t = = (Vi + V.m) (25)
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Figure 1: Particle Immersed Boundary Method. The immersed boundary is
discretized using boundary points that can only i flow particles within the kernel
support.

Note that the forcing term f acts locally on the boundaries where a no-slip con-
dition is imposed and the velocity ugesireqd i known. The boundary is described
by boundary points associated with a surface area. We employ a Kernel based
on B-Splines for a dirac delta approximation of the forcing term f. We use
particle-mesh, mesh-particle interpolation schemes for performance reasons.
Our implementation involves the separation of the forcing term into two

parts:

fi = pi(fip + fib) (26)

fip = _A‘; - % (=Vpi + V.75) (27)
Udesired

fiv = BN (28)

The pIBM consists the following steps:

1.
2.

Evaluation of the first part of the forcing term f;, on the particle
Interpolation of f;, from the particles onto the boundary points via mesh.
Evaluate forcing term f; on the boundary points by adding f;

Interpolation of forcing term f from the boundary points to the particles
via mesh.

Evolving particles according to the governing equations including forcing
term f



3.4 Particle Equations

The particle position x,, mass m,, volume v,, and velocity component u;,
evolve by the following system of ordinary differential equations derived from
Eq.(1),(2) and (3)

T
% = (V- u)pvp
Tt = 2~ + (G ) + o

(29)

where (o), denotes the derivative approximation on a particle p (cf. Eq. (21))
and

87'ij o 821,61' 1 821,61
(G2t = (150 + 3 (30)
Py = 2R, (31)
Up

In the present study, the Laplacian approximation <% %), is evaluated us-
k

ing the particle strength exchange approach [7] to increase the stability of the
simulations.

8 i
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The second order kernel (. was successfully applied in diffusion simulations
involving complex geometries [27].

The interface between the body and the fluid is captured using the Particle

Level Set Method [14, 13]. The level set function represents the signed distance

function to the interface. The particles carry the level set information as a scalar

attribute ®, that remains constant during the time integration:

v,

=0 (34)

We reinitialize the level set value after every remeshing to maintain the signed
distance property. The exact knowledge of the body shape allows the reinitial-
ization of the level set function with its analytical value.



The inlet and outlet boundary conditions are imposed by using image par-
ticles that have similar physical properties as the flow particles. The boundary
particles interact with the flow particles such that the boundary conditions are
satisfied. The no-slip boundary condition on the body surface is handled by the
proposed particle Immersed Boundary Method.

4 Results

We demonstrate the performance of the presented Immersed Boundary Method
on several test problems and compare with results presented in the literature.
We consider the Poiseuille flow, flow past a cylinder and sphere and an anguil-
liform swimming. The comparison is based on several non-dimensional charac-
teristic flow numbers.

4.1 Poiseuille flow

A classic, and simple, problem in viscous, laminar flow involves the steady-
state velocity and pressure distribution for a fluid moving laterally between two
plates. The flow is driven by a pressure gradient in the direction of the flow,
and is retarded by viscous drag along both plates, such that these forces are
in balance. The simulation domain was considered to be a unit square with
periodic boundary condition at the inlet/outlet boundary (x=0, x=1) and no-
slip conditions at the plates (y=0, y=1). We consider a fluid density with an
initial density of p = pg = 1 at a Reynolds number of Re = 100 and a Mach
number of M = 0.5. The fluid is initially at rest and accelerated by an artifical
constant pressure gradient of 0.001. The time integration scheme is a Runge
Kutta scheme of 2nd order with a time step of ¢ = 0.0005 in all cases. For
the error analysis the maximal difference in the velocity profile to the analytical
solution is evaluated when the profile becomes stationary at time 7" = 70. The
error normalized by the maximal velocity is shown in Fig. 2. The error analysis
shows the flow simulations are second order accurate in space.

4.2 Flow past a cylinder

We present the simulation of flow past a cylinder for various Reynolds numbers
to demonstrate the performance of the particle Immersed Boundary Method and
compare with previous results presented in the literature. The flow past a cir-
cular cylinder is associated with various instabilities. These instabilities involve
the wake, the separated shear layer and the boundary layer depending on the
Reynolds number. Up to Re ~ 47, the flow is steady with two symmetric vortices
on each side of the wake centre line. The first wake instability, manifestation of
a Hopf bifurcation, occurs at Re =~ 47. For Re > 47, although remaining lami-
nar, the flow becomes unsteady and asymmetric. Von Karman vortex shedding
is observed for slightly larger Re. At Re = 190, three-dimensional instabilities,
such as formation of vortex loops, deformation of primary vortices and stream
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Figure 2: Poiseuille flow: L.,— error velocity of the particle Immersed Boundary
Method (pIBM) compared to second order scaling (dashed line)

wise and span wise vortices appear in wake. The wake flow undergoes a series of
complex three-dimensional instabilities, making the flow eventually turbulent.
Beyond a certain critical Re, the shear layer separating from the upper and
lower surface of the cylinder starts becoming unstable via the Kelvin-Helmholtz
mode of instability. The transition point, beyond which the separated layer be-
comes unstable, moves upstream with the increase of the Reynolds number. At
Re ~ 2-10°, the boundary layer on the cylinder surface undergoes a transition
from laminar to turbulent.

We use the Runge Kutta 4th order scheme for time integration with constant
time step of At = 0.005. The domain size is set to 15d x 30d where d is the
diameter of the cylinder. The Mach number M is 0.05 The solution is remeshed
after every time step. The fluid is initially at rest and accelerated by a small
artificial force until the desired inlet velocity is reached to avoid the development
of pressure wave at the boundary.

Fig. 3 and Fig. 4 shows the vorticity field at Re = 100 and Re = 1000
respectively. The instability is trigged by a pertubation of the inlet velocity
in lateral direction as described by Plouhams [25]. The vorticity field match
well with the Finite Element solutions presented by Singh et al. [29] in both
cases. The simulations require a particle spacing of h = 0.078d for Re = 100
and h = 0.052d for Re = 1000.

Fig. 5 shows the variation of the drag coefficient with the Reynolds number.
The simulation results of the pIBM are compared with experimental results
and computations considering incompressible flow. It is observed that the val-
ues from present computations match well the experiments for Re < 200. In
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Figure 3: Flow past a cylinder at Re = 100. Contour levels of the vorticity
contours at ( £20,+15,4+10,£7.5, £5,4+2.5)

Figure 4: Flow past a cylinder at Re = 1000. Contour levels of the vorticity
contours at ( £20,+15,4+10, £5)
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particular, Table 1 shows the excellent agreement to experiments and previous
simulation results with respects to drag coefficient and Strouhal number.

Beyond Re = 180 the wake flow undergoes three-dimensional transitional
instabilities. Therefore, for Re > 200 the drag coefficient and the Strouhal
number are overpredicted by two-dimensional computations.
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Figure 5: Flow past a cylinder: Time averaged drag coeflicient of pIBM (circles)
versus Reynolds number in comparison with experimental data (solid line, taken
from [26]) , a Spectral Method (dashed line, taken from [29]) and a FEM solution
(crosses) [29]

Table 1: Flow past a cylinder: Comparison with previous simulations and ex-
periments

Re =100,D =0.2 Drag coefficient | Strouhal number
pIBM 1.38 0.162
Henderson [12] 1.35 -

Park et al. [22] 1.33 0.165

Silva et al. IBM [28] 1.39 0.162
Singh et al. FEM [29] 1.41 0.164

Kim et al. FV IBM [19] 1.33 0.165
Wieselberger (Exp.) taken from [26] 1.45 -
Williamson (Exp.) [30] - 0.165
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Fig. 6 shows the pressure coefficient of the time averaged flow along the
cylinder surface for Re = 100 compared to the result of Park et al. [22]. The
angle 0 is measured from the stagnation point of the incoming flow towards the
outlet. The pressure coefficient C), agrees well with the results of Park et al.
[22]. The pressure field tends to reveal noise at the angle 10° < 6 < 50° due to
unresolved pressure waves in the compressible fluid.

1.5

Pressure coefficient C,, [-]

o

15 : : :
0 50 100 150
angle 6 [degree o]

Figure 6: Flow past a cylinder at Re = 100: Pressure coefficient C), (circle)
versus angle in comparison with the solution of Park [22] (solid line)
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Figure 7: Flow past a sphere at Re = 300. The vortices behind the sphere are
visualized using the Ay method [15]. The color represent the local flow velocity.

4.3 Flow past a sphere

Wakes of incompressible fluid behind spheres are observed to be steady for
Reynolds numbers below 270. Above this limit vortices break off and are pe-
riodically released to form vortex loops that are connected like in a chain. We
consider the flow past a sphere at M = 0.1 and Re = 100 and Re = 300.
Table 2) shows that the drag and lift coefficient of the pIBM compare well
with the simulation results considering incompressible fluid. The domain size is
10d x 10d x 15d, the particle spacing h = 0.052d where d is the diameter of the
sphere. The spacing of the boundary points is in average the same. The time
integrator is Runge Kutta 4 using a time step of At = 0.005. Fig. 7 shows the
three-dimensional vorticity structure at Re = 300. The surface of the vortices
is identified by the A2 method of Jeong and Hussain [15]. At Re = 300 the flow
is unsteady and the vortices shed asymmetrically. This flow behavior matches
with the results of Johnson and Patel [17]. The agreement in the flow structure,
as well as in the drag and lift coefficients indicates that the present method
accurately captures the three-dimensional vorticity field.

4.4 Falling Sphere

The problem of a falling sphere is a simple test case involving fluid-structure in-
teractions. Kern [18] presented this test case to validate the fluid-body coupling
procedure. We consider a rigid sphere of density ps = 1.041 > py at Reynolds
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Table 2: Flow past a sphere: Comparison with previous simulations

Re =100 Drag coefficient | Lift coefficient | Strouhal number
pIBM (M =0.1) 1.5 - -
Fornberg [10] 1.09 - -

Kim et al. FV IBM [19] 1.09 - -

Fadlun et al. [9] 1.08 - -

Re =300

pIBM (M =0.1) 0.71 0.062 0.133
Johnson and Patel [16] 0.66 0.069 0.137

Kim et al. FV IBM [19] 0.66 0.067 0.134
Ploumhans et al. [25] 0.68 0.066 0.137

Table 3: Falling sphere: Convergence study of the falling velocity

Particle spacing h ) | Falling velocity || Time step At | Falling velocity
(At = 0.001) (t=10) (h=1/16) (t=2)
1/8 1.02 0.004 0.602
1/16 0.95 0.002 0.592
1/32 0.93 0.001 0.596
Johnson et al. [16] 1.00 0.0005 0.595

number Re = 100 and at Mach number of M = 0.25. The sphere is released
from rest and accelerates until it reaches its asymptotic falling velocity. The
sphere diameter d is set to d = 1 and the gravity g = 20. The size of the domain
is set to 6 x 20 x 6, the time integration is Runge Kutta 2nd order with a time
step of At = 0.001. Remeshing is applied every time step. An asymptotic falling
velocity of U = 0.95 is reached at time ¢ = 10 using a particle spacing of 1/16.
This velocity is in reasonable agreement with the results of Johnson and Patel
[16]. Table 4.4 summarizes the results of the falling sphere.

5 Simulation of Anguilliform Swimming

Complex structures interacting with ambient fluids appear in many biological
systems. To demonstrate the performance of the pIBM approach, we present the
simulation of anguilliform swimming of a self-propelled eel-like body immersed
in a viscous fluid. Anguilliform swimmers, such as lamprey, propel themselves
by propagating curvature waves backwards along the body. We compare the
simulations results with an incompressible finite-volume solution presented by
Kern et al. [18]. The solution of Kern et al. is second order accurate in space
and first order accurate in time using an adaptive grid.
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5.1 Introduction

The motion of the body is described by the two-dimensional deformation of the
mid-line based on the simulations of Carling et al. [2]. The lateral displacement
of the mid-line ys(s,t) in a local system is defined as

s/L+0.03125

where s is the arc length along the mid-line of the body (0 < s < L), t is the
time, T the periodic time.

The three dimensional body of the swimmer is described by spatially varying
ellipsoid cross sections. The length of the two half axis w(s) and h(s) are defined
as

ys(s,t) =0.125

V2wps — s2 0<s<s
w(s) = ¢ wp — (wp, — wy) (Ss;ssbb)z sp <5< s (36)
Wy LLi:t 5 <5<
2
h(s) =by/1— <S;a) (37)

where wy, = sp = 0.04L, s; = 0.95L, w; = 0.01L, a = 0.51L and b = 0.08L.
We apply a no-slip boundary condition on the surface of the body. The mid-
line of the body is embedded into a non-inertial (z’, y’)-system where the center
of mass of the deforming body remains and the total angular momentum is
conserved. The fluid-body interactions are computed in the inertial system
(x,y,2) considering the swimmer as a rigid body. Thus, the motion of the body
in the global system (O, x, y, z) is described by the Newtons equations of motion:

mi, = F, (38)
jz¢c+lz§bc = Mz; (39)

where m is the total mass of the immersed body, x. represents the position
of the center of mass, ¢, the global angle with respect to the initial position,
F and M, are the fluid force and yaw torque acting on the body surface. The
time-dependency of the inertial moment I, about the yaw axis is also considered
although it is small compared to the inertial moment itself.

We set the viscosity of the fluid to be = 1.4-107%, the body length L = 1,
the density po, fiuid = Prody = p = 1 resulting in a Reynolds number of 3850
based on the final swimming speed.

The fluid forces acting on the body are shown as non-dimensional coeffi-
cients Cy = F|/(0.5pU3S) and C, = F1 /(0.5pUES) parallel and lateral to the
swimming direction, where S represents the circumference in two-dimensions
and the surface of the body in three dimensions. The yaw torque is measured
in the non-dimensional coefficient Cps = M, /(0.5pUZLS).
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5.2 Equations of the Anguilliform Swimmer

The position x, and the angle ¢. of anguilliform swimmer evolve by the following
set of equations based on Egs. (38) and (39)

dx, B

dt - uC7

du, F

a — m’

d;’;c = w,, (40)
dwc _ Mz - .zwc

dt L

where u. denotes the velocity of the swimmer and w, the angular velocity. We
solve this set of equations simultaneously with the particle equations (Eq. ?7-77)
that describe the fluid behavior.

5.3 Computational Setup

The particles are initially distributed uniformly in the domain and remeshed
every time step. We integrate the Eqns.(??)-(??), and (40) with respect to time
using a explicit 4th order Runge-Kutta scheme with time step of At = 0.001.
We consider the domain as an noninertial coordinate system that moves with
the opposite x1-component of the fish velocity such that z;-position of the fish
is constant in the noninertial coordinate system. Thus, we accelerate the fluid
in x1-direction by the opposite force that acts on the swimmer and the swimmer
remains on its xi-position. We impose an inlet and an outlet condition to the
boundary ahead and rear of the swimming body, respectively. This approach
enables us to reduce the computational effort significantly because our particle
solver is currently limited to a uniform resolution. The size of the domain is
4 x 2 in two dimensions and 3 x 2 X 2 in three dimensions. This domain size is
tested to be sufficiently large to neglect the influence of the boundary.

The simulations are based on 1.3-10° particles in two dimensions, and 2.5-107
particles in three dimensions.

5.4 Results
5.4.1 Two-Dimensional Anguilliform Swimmer

We present a comparison in the two dimensional case with the work of Kern et
al. [18] in terms of velocity of the swimmer, as well as forces and torque acting
on the swimmer. The swimmer accelerates from rest to an asymptotic mean
forward velocity of ﬁl\ = 0.54 in about seven undulation cycles. The velocity
varies slightly during a cycle while the lateral velocity U, has an amplitude of
0.04. The time history of the longitudinal and lateral velocity agrees very well
with the incompressible solution (Fig. 8). The velocity differs the most at time
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Figure 8: Longitudinal (solid line) and lateral velocity (dashed line) of the two
dimensional swimmer compared to finite volume solution (light blue) [18]

1 < t < 4 where the density variations are larger than at later time steps. The
higher density variations lead to higher pressure variations resulting in larger
forces acting on the swimmer. The incompressible solution is approximated
sufficiently with a Mach number of M = 0.1.

The longitudinal and lateral forces and the torque (Fig. 9) agree very well
with the incompressible solution. The force and moment coefficient Cj, C'; and
C) converge to oscillation modes with zero mean and a constant amplitude of
0.03, 0.04 and 0.03, respectively.

Kern et al. [18] applied a low pass filter to the fluid force F' and the torque
M, to stabilize the simulation of the incompressible flow. We can omit the
use of a low pass filter in our study. The compressibility of the fluid causes
unresolved pressure waves resulting in high frequent noise in the flow structure.
A second order filter [24] is applied to the mass and the momentum during the
remeshing process every 100 steps to suppress the small scale pressure waves in
the range of the Nyquist frequency. A drawback of the simulation, however, is
the remaining noise in the pressure field resulting in noisy forces acting on the
swimmer.

Fig. 10 and 11 show the vorticity field of the swimmer during one period
at the final swimming speed. The main differences in the vorticity field result
from the fact that the particle solution is uniformly resolved, whereas the finite
volume solution involves an adaptive re-gridding. Thus, the vorticity shedding
at the boundary layer is better resolved in the finite volume solution, the wake
pattern behind the tail in the particle solution.

The tail beat amplitude is A = 0.16 and the corresponding Strouhal number
is St = 0.59. The wave velocity is V = 0.73, which results in a slip of U”/V =
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Figure 9: Longitudinal force C), lateral force C'; and torque Cps of the two
dimensional swimmer (black) compared to finite volume solution (light blue)
[18]
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dimensional swimmer using pIBM (left)
right) for one swmming cycle at time t,

Figure 10: Vorticity field of the two
and reference solution of Kern
t+0.25T, t+0.5T, t+0.75T
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Figure 11: Zoom of the vorticity field at the tail of the two-dimensional swimmer
using pIBM (left) and reference solution of Kern [18] (right) for one swmming

cycle at time t, t+0.25T, t4+0.5T, t40.75T
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Figure 12: Longitudinal (solid line) and lateral velocity (dashed line) of the
three dimensional swimmer compared to finite volume solution (light blue) [18]

0.74.

5.4.2 Three-Dimensional Anguilliform Swimmer

In three dimensions the forces acting on the fish compare well with the finite
volume solution (Fig. 13). The net force and moment coefficient C), C'1 and Cy
oscillate with a mean of zero and amplitudes of 0.04, 0.06 and 0.03, respectively.
The final swimming speed in the particle solution (uprpm = 0.448) is 12%
higher than the result in the finite volume solution (upy = 0.402). This result
matches well with the drag comparison in the flow past a sphere at Re = 300
where the drag coefficient differs approximately 10% from the results of grid
based methods (Table 2). The forward velocity U oscillates with an amplitude
of 0.01. The lateral velocity U, has a zero mean and an amplitude of 0.03. The
wave velocity V' = 0.73 is equal to the two dimensional case resulting in the slip
of Uy/V = 0.61. The tail beat amplitude is determined to be A = 0.15 with
St = 0.67.

The oscillating tail of the swimmer creates a three-dimensional vortex shed-
ding in the frequency of the swimming motion (Fig. 14-16). Both, the particle
and the finite volume solution show the vorticity shed in every half tail beat
cycle that breaks up into two vortices forming lateral jets. The vorticity field of
particle solution appears smoother and shows less small-scale structures. The
vortex rings are less recognizable. As the finite-volume grid feature a four times
higher resolution in the boundary layer of the tail than the particle solution, the
absence of the small-scale structures in the boundary layer can be associated
with a lack of resolution. The small vorticity structures between the shedding
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Figure 13: Longitudinal force C’H, lateral force C'; and torque C; of the three
dimensional swimmer (black) compared to finite volume solution (light blue)
[18]
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Figure 14: Vorticity field of the three-dimensional swimmer using pIBM (left)
and reference solution of Kern [18] (right) for one swmming cycle at time t,
t+0.25T, t+0.5T, t+0.75T
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Figure 15: Zoom of the vorticity field at the tail of the three-dimensional swim-
mer using pIBM (left) and reference solution of Kern [18] (right) for one swm-
ming cycle at time t, t4+0.25T, t4+0.5T, t40.75T
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Figure 16: Isosurface of the vorticity magnitude (left) and vortices visualized
by the Az-method (right) of the three-dimensional swimmer using pIBM for one
swmming cycle at time t, t40.25T, t40.5T, t4+0.75T
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vortex pair result are mainly spurious and result from the highly dynamic re-
finement of the finite volume grid.

Overall, the agreement between the particle and the finite volume solutions is
good and shows that the pIBM is appropriate to solve flow-structure interactions
accurately.

6 Conclusion

We presented a novel particle Immersed Boundary method for solving the no-
slip boundary condition on complex boundaries in two and three dimensions.
This method offers accurate flow-structure interaction for particle methods. The
method is adaptive as particles adapt to resolve the flow evolution and a consis-
tent remeshing procedure is employed in order to ensure the convergence of the
method when the particles get distorted by the flow map. At a Mach Number
of 0.1 the simulation agree well with the incompressible solution. The efficiency
and accuracy of the method, as well as comparison with related methodologies,
is demonstrated in a number of two and three dimensional benchmark problems.
The method is shown to be well capable in solving fluid-structure interaction.
The simplicity of the method in handling complex boundaries makes it suitable
for simulating complex movement of flexible structures as they appear for ex-
ample in anguilliform swimming. A drawback of this method is the effect of
the compressibility of the flow. Fast motions of the boundary in low viscous
flow cause pressure waves in the fluid that can lead to numerical problems. Due
to pressure waves time step is restricted by the inverse of the speed of sound.
Present work involves the embedding of multi-scaling techniques and consider-
ation of further application in the biomedical field of engineering.
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