Tailoring Nanostructures of Injection-Molded Polymers

P. Urwyler^{1,2}, H. Deyhle^{1,3}, O. Bunk³, P.M. Kristiansen⁴, F. Battiston⁵, J. Gobrecht^{2,4}, B. Müller¹

¹Biomaterials Science Center, University of Basel, Switzerland ²Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, Switzerland ³Swiss Light Source, Paul Scherrer Institut, Switzerland ⁴Institute of Polymer Nanotechnology, University of Applied Sciences and Arts FHNW, Switzerland ⁵Concentris GmbH, Basel, Switzerland

INTRODUCTION

Understanding and controlling the structural anisotropies of injection-molded polymers is vital for designing products such as cantilever-based sensors [1]. Synchrotron radiation-based scanning small angle X-ray scattering (SAXS) techniques were used to quantify crystallinity and anisotropy in polymer micro-cantilevers. We demonstrate that micro-cantilevers (μ Cs) made of semi-crystalline polymers such as polyvinylideneflouride (PVDF), polyoxymethylene (POM) and polypropylene (PP) show the expected strong degree of anisotropy along the injection direction.

CANTILEVER SENSORS

Cantilever sensing involves detection of cantilever bending. Adsorption of analytes onto the functionalised cantilever surface produces a differential stress between the two surfaces and induces bending.

MICRO-INJECTION MOLDING

molding

machined

high-quality steel mold was

applied for the fabrication of

µCs [2]. Keeping the

injection speed at 9 cm3/s the

uCs were molded with 2 sets

of mold temperature: PVDF

80°C, 120°C; POM 120°C, 150°C; PP 40°C, 80°C.

Micro-injection

using a laser

Filling of cavities is explained by fountain flow: solidification of melts at mold walls leading to skin layers.

SEM of injection molded PP μC array

X-RAY SCATTERING RESULTS

Background-corrected SAXS patterns for the center of the μ Cs show two diffraction spots in the flow (horizontal) direction.

Variation of I_{peak} , q_{peak} , and FWHM_{peak} across the central part (μ C width in gray). The low intensity variations in the central part of the μ C indicate a homogeneous semi-crystalline structure.

The radial integration of the SAXS patterns allows characterization of the lamellar periodicity using a Lorentzian fit. The decrease of q_{peak} with mold temperature is significant.

The distance of the spots from the beam stop is material dependent and decreases with the mold temperature [3].

The degree of anisotropy is defined as $(I_{max} - I_{min}) / (I_{max} + I_{min})$ which can be derived from the azimuthal intensity distribution. A strong orientation of the semi-crystalline lamellae stacks within the μ C is observed for PVDF, POM and PP μ Cs.

CONCLUSIONS

- The micro-cantilevers are homogenous in the scanning direction perpendicular to the beam.
- \checkmark By increasing the mold temperature, larger nanostructures can be formed
- The anisotropy at the nanometer level can be controlled using the process parameters.
- The strong anisotropic crystalline structure can be controlled by changing the mold temperature but not the injection speed.

– REFERENCE

- [1] P. Urwyler, J. Köser, H. Schift, J. Gobrecht, B. Müller (2012) Biointerphases 7:8
- [2] P. Urwyler, H.Schift, J. Gobrecht, O. Häfeli, M.Altana, F.Battiston, B. Müller (2011) Sensors and Actuators A 33: 1471-77
- [3] P. Urwyler, H. Deyhle, O. Bunk, P.M. Kristiansen, B. Müller (2012 in press) J. Appl. Phys.

ACKNOWLEDGEMENT

The authors thank O. Häfeli (FHNW) for the injection molding, K. Jefimovs (EMPA) and A.Stumpp (FHNW) for the laser micro-machining of the mold, as well as X. Donath for support at the cSAXS beam line. This research activitiy was funded by the Swiss Nanoscience Institute (SNI) through the applied research project DICANS (project 6.2).

CONTACT: prabitha.urwyler@unibas.ch bert.mueller@unibas.ch