

Departement Physik Universität Basel

Prof. Dr. E. Meyer

Ansprechpartner: Carl Drechsel

c.drechsel@unibas.ch

Büro 3.04

Tel.: 061 207 37 30 http://adam.unibas.ch

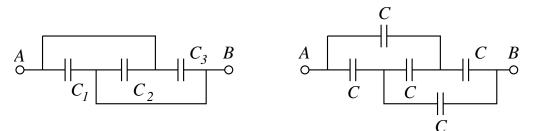
Übungen und Ergänzungen zur Einführung in die Physik II

für Studierende

der Biologie, Pharmazie und Geowissenschaften

Serie 2 / 15.2.2019 Besprechung der Übungen: **Di**, **05.03.2019** / **Mi**, **06.03.2019**

Aufgabe 4.


- (a) Berechnen Sie das elektrostatische Potential des Protons in einem Abstand von $1 \cdot 10^{-10}$ m.
- (b) Wie gross wäre demnach die elektrostatische potentielle Energie des Elektron-Proton-Systems, wenn der Abstand zwischen Elektron und Proton $1 \cdot 10^{-10}$ m beträgt? Geben Sie die Energie jeweils in J und eV an.
- (c) Vergleichen Sie das Resultat aus 4. (b) mit dem elektrostatische Potential und der elektrostatischen potentiellen Energie, welche sich bei einem Abstand von $5.3 \cdot 10^{-11}$ m ergeben (dies entspricht dem mittleren Abstand zwischen Elektron und Proton in einem Wasserstoffatom). Geben Sie die Energie jeweils in J und eV an.

Aufgabe 5.

- (a) Gegeben sei ein mit Luft gefüllter Plattenkondensator mit quadratischen Platten der Seitenlänge 25 cm und dem Abstand $d_1 = 0.5$ mm. Berechnen Sie dessen Kapazität.
- (b) Dieser Kondensator wird so geladen, dass eine Potentialdifferenz von $U_1 = 10$ V entsteht. Dann wird der Kondensator von der Quelle getrennt. Wie gross ist die Potentialdifferenz U_2 , wenn der Abstand zwischen den Platten auf $d_2 = 5$ mm vergrössert wird?
- (c) Jetzt wird der Raum zwischen den zwei Platten mit einem Dielektrikum ($\varepsilon = 2.1$) gefüllt und ein zusätzlicher Kondensator mit der Kapazität C_x wird in Serie geschaltet. Wie gross muss C_x sein, damit gesamte Kapazität des Systems unverändert bleibt und gleich C_1 ist?

Aufgabe 6.

Berechnen Sie die Gesamtkapazität zwischen den Punkten A und B.

Zusatzaufgabe.

Berechnen Sie die elektrische Feldstärke des elektrischen Feldes mit den folgenden Potentialen:

a)
$$\phi = a(x^2 - y^2);$$

b)
$$\phi = axy$$
,

wobei a = Konstant. Skizzieren Sie die Feldlinien in der x, y-Ebene.

Antworten.

Aufgabe 4. (a) 14.38 V (b)
$$-14.38$$
 eV und $-2.3 \cdot 10^{-18}$ J (c) -27.13 eV und $-4.3 \cdot 10^{-18}$ J

Aufgabe 5. (a)
$$1.1 \text{ nF}$$
 (b) 100 V (c) 2.1 nF

Aufgabe 6. (a)
$$C_1 + C_2 + C_3$$
 (b) C