Konstanten:

- Elektrische Feldkonstante: $\varepsilon_0 = 8.854 \cdot 10^{-12} \frac{A \cdot s}{V \cdot m}$
- $\bullet\,$ Dielektrizitätskonstante von Quarzglas: $\varepsilon_{Quarzglas}~=~4$
- Elementar
ladung: $e = 1.602 \cdot 10^{-19} \, \mathrm{C}$
- Masse des Protons: $m_p = 1.673 \cdot 10^{-27} \,\mathrm{kg}$
- Magnetische Feldkonstante: $\mu_0 = 4\pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m}$
- Fallbeschleunigung: $g = 9.81 \frac{\text{m}}{\text{s}^2}$

1 Plattenkondensator (6 Punkte)

Betrachten Sie einen Plattenkondensator bestehend aus zwei parallelen quadratischen Platten mit der Seitenlänge 1 m.

- (a) Berechnen Sie die Kapazität des Kondenstors wenn der Plattenabstand 1 cm beträgt. (2 Punkte)
- (b) Wie ändert sich die Kapazität, wenn der Raum zwischen den Platten vollständig mit Quarzglas ausgefüllt wird? (2 Punkte)
- (c) Der Kondensator wird an eine Batterie mit 12 V angeschlossen und aufgeladen. Anschliessend wird er von der Batterie getrennt. Berechnen Sie die im Feld des Plattenkondensators gespeicherte Energie? (2 Punkte)

2 RLC-Kreis (12 Punkte)

Betrachten Sie eine RLC-Reihenschaltung aus einer Spule mit einer Induktivität von 10 mH, einem Kondensator mit einer Kapazität von 2.0 μ F, einem Ohmschen Widerstand von 5.0 Ω und einer idealen Wechselspannungsquelle mit einer Maximalspannung von 100 V.

- (a) Berechnen Sie die Resonanzfrequenz ω des RLC-Kreises. Die Dämpfung des Oszillators kann vernachlässigt werden. (2 Punkte)
- (b) Berechnen Sie die effektive Stromstärke im Resonanzfall. (2 Punkte)

Nehmen Sie für die folgenden Aufgaben eine Frequenz von $\omega=8000~{\rm rad/s}$ an. Der RLC-Kreis befindet sich nicht mehr im Resonanzfall.

- (c) Berechnen Sie den kapazitiven und den induktiven Blindwiderstand. (4 Punkte)
- (d) Berechnen Sie die Impedanz und die effektive Stromstärke. (4 Punkte)

Bitte umblättern!

3 Zyklotron (5 Punkte)

Ein Zyklotron (Kreisbeschleuniger) zur Beschleunigung von Protonen arbeitet mit einem Magnetfeld von $1.4~\mathrm{T}$ und hat einen Radius von $0.7~\mathrm{m}$.

- (a) Geben Sie die Zyklotronfrequenz an. (2 Punkte)
- (b) Berechnen Sie die kinetische Energie der Protonen beim Austritt aus dem Zyklotron. (3 Punkte)

4 "Schwebender" Draht (3 Punkte)

Ein horizontal verlaufender Draht führt einen Gleichstrom von $I_1 = 80$ A. Wie gross muss der Strom I_2 durch einen zweiten Draht sein, der 20 cm unterhalb des ersten parallel verläuft, damit dieser nicht aufgrund der Erdanziehung nach unten fällt? Geben Sie die Richtung an, in die I_2 fliessen muss. Der untere Draht hat eine Masse von 0.12 g pro Meter. (3 Punkte)