Departement Physik Universität Basel

Exercises and Complements for the Introduction to Physics I

 for Students
of Biology, Pharmacy and Geoscience

Sheet 1 / September 16, 2019

Solutions

Exercise 1.

Derivatives $d y / d x$:
(a) $\frac{d y(x)}{d x}=3 a x^{2}+2 b x+c$
(b) $\frac{d y(x)}{d x}=\frac{b}{x}$
(c) $\frac{d y(x)}{d x}=(1-a x) \exp ^{-a x}$
(d) $\frac{d y(x)}{d x}=\frac{2 a-5 a b x^{3}}{2 \sqrt{1-b x^{3}}}$

Derivatives with respect to time t :
(a) $\frac{d E(t)}{d t}=m v(t) \frac{d v}{d t}(t)=m v(t) a(t)=F v(t)=P$
(b) $\frac{d p(t)}{d t}=m a(t)=F$

Integral $F(x)=\int f(x) d x$:
(a) $\quad F(x)=\frac{3}{4} x^{4}+\frac{2}{3} x^{3}+C$
(b) $\quad F(x)=-\frac{a}{b} \cos (b x)+C$
(c) $\quad F(x)=4 \ln (x)+C$

Using the vectors $\vec{a}=\left(\begin{array}{c}1 \\ 3 \\ -4\end{array}\right)$ and $\vec{b}=\left(\begin{array}{c}3 \\ 5 \\ -1\end{array}\right)$:
(a) $\vec{s}=\left(\begin{array}{l}a_{1}+b_{1} \\ a_{2}+b_{2} \\ a_{3}+b_{3}\end{array}\right)=\left(\begin{array}{c}4 \\ 8 \\ -5\end{array}\right)$
(b) $\vec{s}=\left(\begin{array}{l}a_{1}-b_{1} \\ a_{2}-b_{2} \\ a_{3}-b_{3}\end{array}\right)=\left(\begin{array}{l}-2 \\ -2 \\ -3\end{array}\right)$
(c) $\quad \vec{d}=\left(\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)=\left(\begin{array}{c}17 \\ -11 \\ -4\end{array}\right)$
(d) $\quad c=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=22$

Graphical solution (2-dimensional):

Exercise 2.

(a) C_{1} in m and C_{2} in m / s
(b) C_{1} in $\mathrm{m} / \mathrm{s}^{2}$
(c) C_{1} in $1 / \mathrm{s}$ and C_{2} in $1 / \mathrm{s}$
(d) C_{1} in $\mathrm{m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$
(e) $C_{1} \mathrm{in} \mathrm{m} / \mathrm{s}$ and C_{2} in m

Exercise 3.

General: $t=\frac{s}{v}$
(a) $\quad t=3.3 \cdot 10^{-24} \mathrm{~s}$
(b) $t=500 \mathrm{~s}=8 \mathrm{~min} 20 \mathrm{~s}$
(c) $\quad t=40000 \mathrm{~s}=11 \mathrm{~h} 6 \mathrm{~min} 40 \mathrm{~s}$

Exercise 4.

(a) $v_{\max }=a t_{\text {acceleration }}=45.4 \mathrm{~km} / \mathrm{h}$
(b) $s_{\text {acceleration }}=\frac{1}{2}$ at $t_{\text {acceleration }}^{2}=37.8 \mathrm{~m}$
(c) $s_{\text {constant }}=v_{\text {max }} t_{\text {constant }}=63.0 \mathrm{~m} \quad s_{\text {braking }}=\frac{1}{2} a_{\text {braking }} t_{\text {braking }}^{2}$ and $t_{\text {braking }}=\frac{v_{\text {max }}}{a_{\text {braking }}}$
(d) $s_{\text {braking }}=\frac{v_{\max }^{2}}{2 a_{\text {braking }}}=18.9 \mathrm{~m}$
(e) $s_{\text {total }}=s_{\text {acceleration }}+s_{\text {constant }}+s_{\text {Brems }}=119.7 \mathrm{~m}$

Exercise 5.

(a)
(b)
a) $v\left(t_{1}\right)>v\left(t_{2}\right) \quad\left|v\left(t_{1}\right)\right|>\left|v\left(t_{2}\right)\right|$
b) $v\left(t_{1}\right)=v\left(t_{2}\right) \quad\left|v\left(t_{1}\right)\right|=\left|v\left(t_{2}\right)\right|$
c) $v\left(t_{1}\right)<v\left(t_{2}\right) \quad\left|v\left(t_{1}\right)\right|>\left|v\left(t_{2}\right)\right|$
d) $v\left(t_{1}\right)>v\left(t_{2}\right) \quad\left|v\left(t_{1}\right)\right|=\left|v\left(t_{2}\right)\right|$

