

Departement Physik Universität Basel Prof. D. Zumbühl, Prof. M. Calame Contact person: Carl Drechsel c.drechsel@unibas.ch Office: 3.04 Tel.: 061 207 37 30 http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 4 / September 30, 2019

Discussion of the Exercises: 15.10.2019/16.10.2019

Exercise 16.

At a post, a fence pulls with 4000 N and another with 7000 N parallel to the ground. The angle between the fences is 120°. Calculate the force of a tensioning rope pulling parallel to the ground to keep the post in balance.

Exercise 17.

Look at the following four cases: Is the system in equilibrium or not? Give reasons for your answer.

Exercise 18.

A horizontal flagpole (mass M = 5.2 kg, length l = 2 m, b = 0.5 m) is mounted on a roof overhang as shown in the figure. At the end of the pole a poster with a mass of m = 8 kg is attached.

(a) Sketch all the forces acting on this system.

(b) Calculate the supporting force at position A and B.

Exercise 19.

An object obtains an acceleration of 1.5 m/s^2 while sliding down an inclined plane which has a angle of 20°. How big is the coefficient of sliding friction μ_g ? How big must the coefficient of static friction μ_H be for the limiting case such that the object does not move/slide?

Exercise 20.

Two masses m_1 and m_2 are connected with a thin rope. The dynamic friction of the masses on the support plate is μ_g . A force \vec{F} acts on mass m_2 , see figure.

- (a) How big is the acceleration \vec{a} of the masses?
- (b) How big is the force $\vec{F_1}$?

Solutions:

<u>Exercise 16.</u> 6083 N

Exercise 18. 415.9 N and 286.4 N

Exercise 19. 0.2 and 0.36