

Departement Physik
Universität Basel
Prof. D. Zumbühl, Prof. M. Calame
Contact person: Carl Drechsel
c.drechsel@unibas.ch

Office: 3.04
Tel.: 0612073730
http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 4 / September 30, 2019
Discussion of the Exercises: 15.10.2019/16.10.2019

Exercise 16.

At a post, a fence pulls with 4000 N and another with 7000 N parallel to the ground. The angle between the fences is 120°. Calculate the force of a tensioning rope pulling parallel to the ground to keep the post in balance.

Exercise 17.

Look at the following four cases: Is the system in equilibrium or not? Give reasons for your answer.

Exercise 18.

A horizontal flagpole (mass $M=5.2 \mathrm{~kg}$, length l $=2 \mathrm{~m}, \quad b=0.5 \mathrm{~m})$ is mounted on a roof overhang as shown in the figure. At the end of the pole a poster with a mass of $m=8 \mathrm{~kg}$ is attached.
(a) Sketch all the forces acting on this system.
(b) Calculate the supporting force at position A and B.

Exercise 19.

An object obtains an acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$ while sliding down an inclined plane which has a angle of 20°. How big is the coefficient of sliding friction μ_{g} ? How big must the coefficient of static friction μ_{H} be for the limiting case such that the object does not move/slide?

Exercise 20.

Two masses m_{1} and m_{2} are connected with a thin rope. The dynamic friction of the masses on the support plate is μ_{g}. A force \vec{F} acts on mass m_{2}, see figure.

(a) How big is the acceleration \vec{a} of the masses?
(b) How big is the force \vec{F}_{1} ?

Solutions:

Exercise 16. 6083 N

Exercise 18. 415.9 N and 286.4 N
Exercise 19. 0.2 and 0.36

