

The 1887 floral painting by van Gogh, "Patch of Grass".

Outline	PAUL SCHERRER INSTITUT
X-ray absorption spectroscopy (XAS) Absorption process Total electron yield mode Examples	
X-ray Magnetic Circular Dichroism (XMCD) Basics Example: Magnetocrystalline Anisotropy	
Closer look at the absorption process Mulitplet effects Example: Interface effect in Exchange Bias system	
X-ray Magnetic Linear Dichroism (XMLD) Basics	

Outline	PAUL SCHERRER INSTITUT
X-ray absorption spectroscopy (XAS) Absorption process Total electron yield mode Examples	
X-ray Magnetic Circular Dichroism (XMCD) Basics Example: Magnetocrystalline Anisotropy	
Closer look at the absorption process Mulitplet effects Example: Interface effect in Exchange Bias system	
X-ray Magnetic Linear Dichroism (XMLD) Basics	

$$m_{\text{orb}} = -\frac{4 \int_{L_3+L_2} (\mu_+ - \mu_-) d\omega}{3 \int_{L_3+L_2} (\mu_+ + \mu_-) d\omega} (10 - n_{3d}), \quad (1) \quad \text{Electron occupation}$$

$$m_{\text{spin}} = -\frac{6 \int_{L_3} (\mu_+ - \mu_-) d\omega - 4 \int_{L_3+L_2} (\mu_+ - \mu_-) d\omega}{\int_{L_3+L_2} (\mu_+ + \mu_-) d\omega} \times (10 - n_{3d}) \left(1 + \frac{7 \langle T_z \rangle}{2 \langle S_z \rangle}\right)^{-1}, \quad (2) \quad \text{magnetic dipole moment}$$

$$< T_z > \text{ is the expectation value of the intra-atomic magnetic dipole operator, accounting for a possible asphericity of the spin density distribution.}$$

$$effective \text{ spin magnetic moment}$$

$$\mu_S^{\text{eff}} = \mu_S + 7\mu_T$$

Outline	
X-ray absorption spectroscopy (XAS) Absorption process Total electron yield mode Examples	
X-ray Magnetic Circular Dichroism (XMCD) Basics Example: Magnetocrystalline Anisotropy	
Closer look at the absorption process Mulitplet effects Example: Interface effect in Exchange Bias system	
X-ray Magnetic Linear Dichroism (XMLD) Basics	
Combine it all Summary Example: Laser control of an exchange bias	s system

Wilhelm Röntgen	
27. März 1845 in Lennep geboren.	
1861 bis 1863 Technische Schule in Utrecht. Aus disziplinarischen Gründen, weil er irrtüml für den Urheber einer Karikatur seines Klassenlehrers gehalten wurde, verwies man ihn oh Abitur von der Schule.	ich ne
1864 - 1868 Eidgenössischen Technischen Hochschule Zürich (ETH Zürich) Maschinenbauingenieur 1869 promovierte Röntgen an der Universität Zürich in Physik mit "Studien über Gase".	
1870 begleitete er August Kundt als Assistent nach Würzburg. 1874 Habilitation Universität Straßburg die ihm die Universität Würzburg zuvor wegen seine fehlenden Abiturs verweigert hatte.	es
 1875 außerordentlicher Professor für Physik und Mathematik an der Landwirtschaftlichen Akademie Hohenheim. 1876 eine Stelle als außerordentlicher Professor für Physik in Straßburg. 1879 ordentliche Professur in Gießen 1888 Professor der Experimentalphysik Würzburg. 1900 Professor an der Universität München 1923 verstorben 	

Creation of electromagnetic radiation

The Liénard–Wiechert field
$$E(t)$$
 of a point charge q detected by an observer at a time t is determined by the distance r^* , the velocity v^* , and acceleration a^* of the charge at the emission or retarded time $t^* = t - r^*/c$. Defining $\beta^* = v^*/c$ we have

$$E(t) = \frac{q}{4\pi\epsilon_0} \underbrace{\frac{1-(\beta^*)^2}{(r^*)^2 (1-n^*\cdot\beta^*)^3} [n^*-\beta^*]}_{\text{velocity field}} + \frac{q}{4\pi\epsilon_0} \frac{1}{c^2 r^* (1-n^*\cdot\beta^*)^3} \{n^* \times ([n^*-\beta^*] \times a^*)\}. \quad (4.58)$$

acceleration field

We have indicated all retarded quantities by an asterisk.

