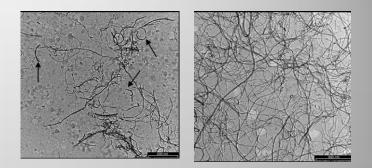


Respiratory toxicity of multi-wall carbon nanotubes

Sara Freund – Nanosciences University of Basel December 2011

- I. Introduction
- II. Experiments
- III. Results
- **IV.** Conclusion
- V. Bibliography

I. Introduction

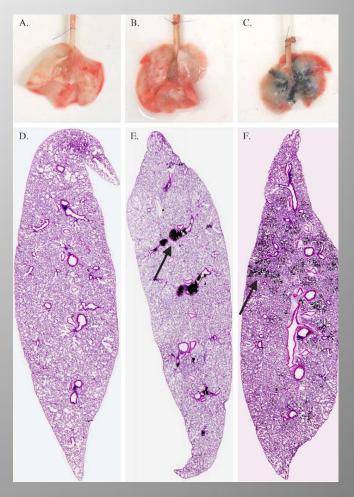

• Why are the carbon nanotubes so interesting?

• Are they potentially dangerous for health or for the environment ?

• How to determine their toxicity?

II. Experiments

• The animals and the Particles



- Experiments in vivo
 - Determination of Biopersistence
 - Determination of Inflammatory response
 - Determination of Fibrotic response
 - Determination of Tumor-Necrosis-Factor-α production
- Experiments in vitro
 - Detemination of the effects induced by CNT on peritoneal macrophages

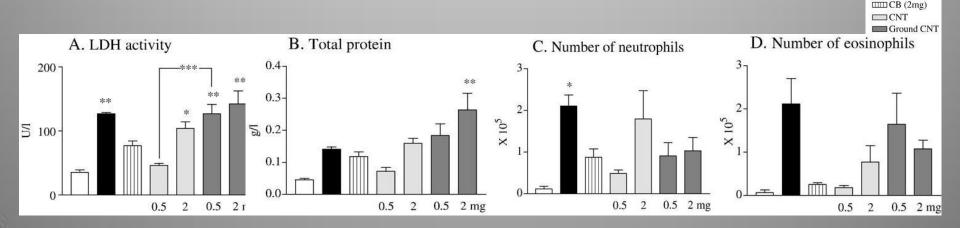
• Grinding of Nanotubes

	CNT	Ground CNT
Length (µm)	5.9 ± 0.05	0.7 ± 0.07
Average inner diameter (nm)	5.2 ± 1.5	5.1 ± 2.1
Average outer diameter (nm)	9.7 ± 2.1	11.3 ± 3.9
Specific surface area (m ² /g)	378 ± 20	307 ± 15
Oxidized forms (atomic %)	13.7 ± 0.7	13.1 ± 0.7
Carbon content (%)	97.8 ± 0.2	98.0 ± 0.2

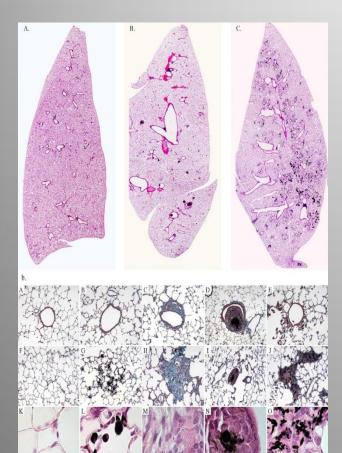
- Morphology of nanotubes were modified by grinding
- Ground CNT were much better dispersed

• In vivo: Biopersistence

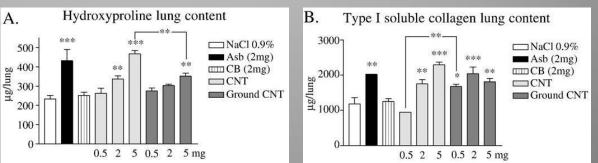
Single i.t. dose	Time after particle administration		
	Day 0	Day 28	Day 60
NaCl 0.9%	ND	ND	ND
	0.4 ± 0.1	0.3 ± 0.1	0.4 ± 0.1
0.5 mg CNT		$(78.4\% \pm 15.3)$	$(81.2\% \pm 26.4)$
	0.5 ± 0.1	0.4 ± 0.1	0.2 ± 0.1
0.5 mg ground CNT		$(78.4\% \pm 12.4)$	$(36.0\% \pm 13.2)$

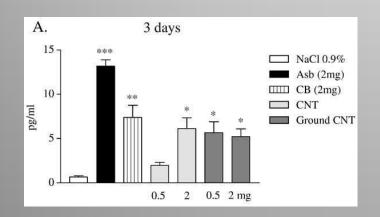

• CNT: not or slowly eliminated

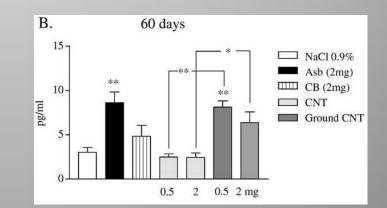
• Ground CNT: more rapidly cleared particularly during the 2nd month


- In vivo: Pulmonary inflammation
- LDH activity increased in BALF after administration of Asb, CNT or ground CNT
 → marker of cell toxicity
- Protein concentration increased in BALF after administration of CNT or ground CNT
 → reflects alveolo-capillar permeability and/ or alveolitis

□ NaCl 0.9% ■ Asb (2mg)

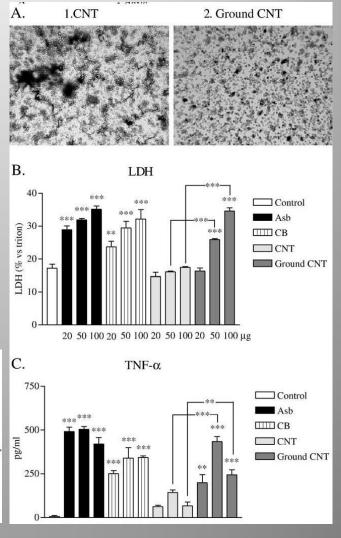

• CNT and ground CNT induced the accumulation of granulocytes


• In vivo: Pulmonary fibrosis



- OH-proline levels were dose dependently increased
- Type I collagen levels were increased
- Presence of collagen rich granulomas in the bronchi of animals instilled with CNT \rightarrow blocked the bronchial lumen
- Ground CNT were better dispersed \rightarrow granulomas in the interstitium tissue

- In vivo: TNF-α
 - At inflammatory stage (day 3) : BAL levels of TNF- α were increased
 - At fibrotic stage (day 60) : TNF- α production increased only after instillation of Asb or ground CNT


• In vitro

• Ground CNT were well dispersed in medium whereas CNT formed large aggregates and were not in contact with cultured cells

- Level of LDH was dose dependently increased
- \bullet Level of TNF- α was only increased by treatment by Abs, CB or ground CNT
- •TNF- α mRNA was upregulated after exposure to Abs,

CB or ground CNT

IV. Conclusion

• Multi-wall carbon nanotubes are not rapidly eliminated when they reach the lung.

• Intact or ground CNT have the potential to cause inflammatory and fibrotic reactions.

• These data support the idea that carbon nanotubes are toxic to the lung.

IV. Bibliography

 J.Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy, D. Lison. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221-231