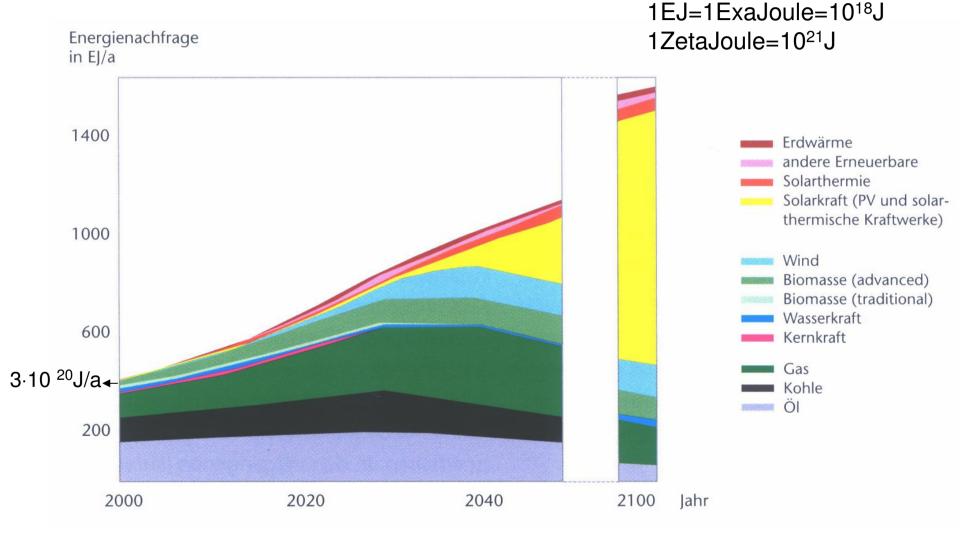
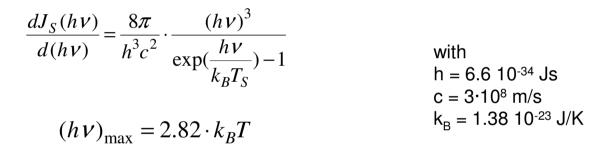
Dye sensitized solar cells (2)


Basic Principles of Photovoltaics Maximum power conversion of photovoltaic devices

Ressources: Peter Würfel, Physik der Solarzellen Jenny Nelson, The Physics of Solar Cells Thomas Dittrich, lecture notes

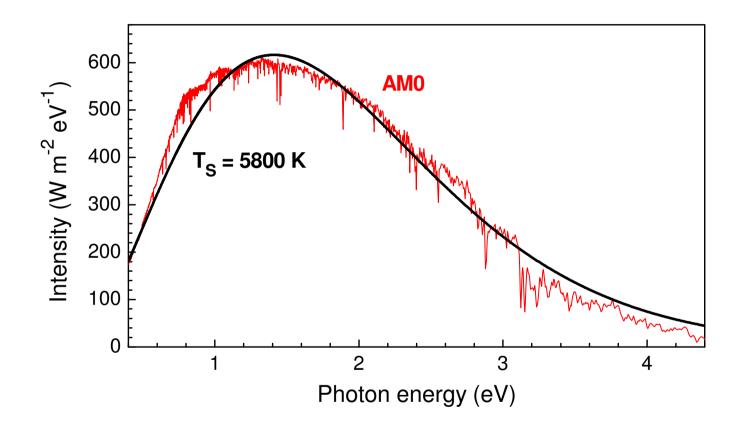
Energy demand

of a human	100 W to sustain biological life (2.4 kWh/day or 876 kWh/year)
	>3 kW to sustain comfortable life (>72 kWh/day or >26.28 MWh/year)
of mankind	more than 6x10 ⁹ individuals
	>1.8x10 ⁴ GW to sustain comfortable life (18TW)
for comparison	energy in 100 g chocolate about 1 kWh energy in 1 I gazoline about 10 kWh power of one nuclear power plant about 1 GW


Scenario of worldwide energy demand

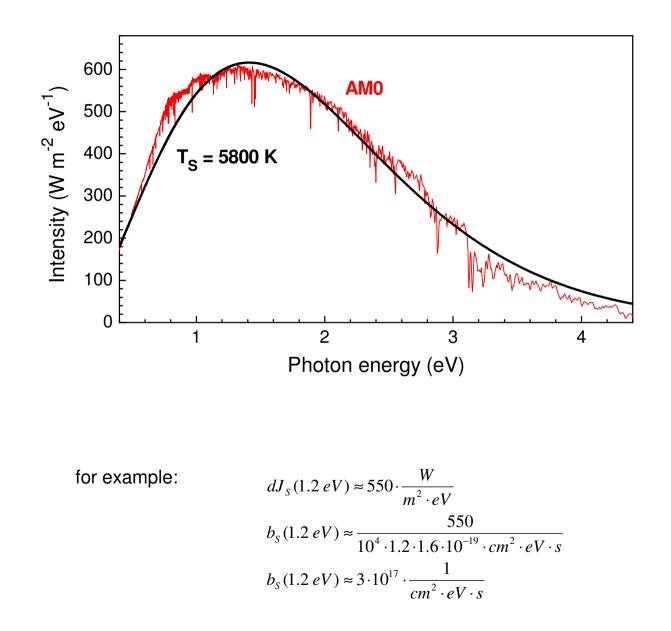
300 ExaJoule per year correspond about to 9 TW= 9000GW

The sun is a hot fire ball


spectrum of the black body radiation (Planck) (energy flux as a function of the photon energy and of the temperature)

By measuring the photon energy at the maximum of the sun spectrum T_s can be obtained.

temperature at the surface of the sun:


T_S ≈ 5800 K

The unit of the photon flux

$$[d\Phi_{S}] = \frac{[dJ_{S}]}{[hv]} = \frac{W}{m^{2} \cdot eV} \cdot \frac{1}{[e]V}$$
$$[d\Phi_{S}] = \frac{AV}{m^{2} \cdot eV} \cdot \frac{1}{AsV}$$
$$[d\Phi_{S}] = \frac{1}{cm^{2} \cdot eV} \cdot s = \frac{number \ of \ photons}{unit \ area \cdot energy \ unit \cdot time \ unit}$$

Energy flux spectrum and photon flux

Power of the sun received on earth

Stefan-Boltzmann law

power of the sun

 $P_S = \boldsymbol{\sigma} \cdot T^4 \cdot 4\pi \cdot R_s^2$

 $I_S = \boldsymbol{\sigma} \cdot T^4$

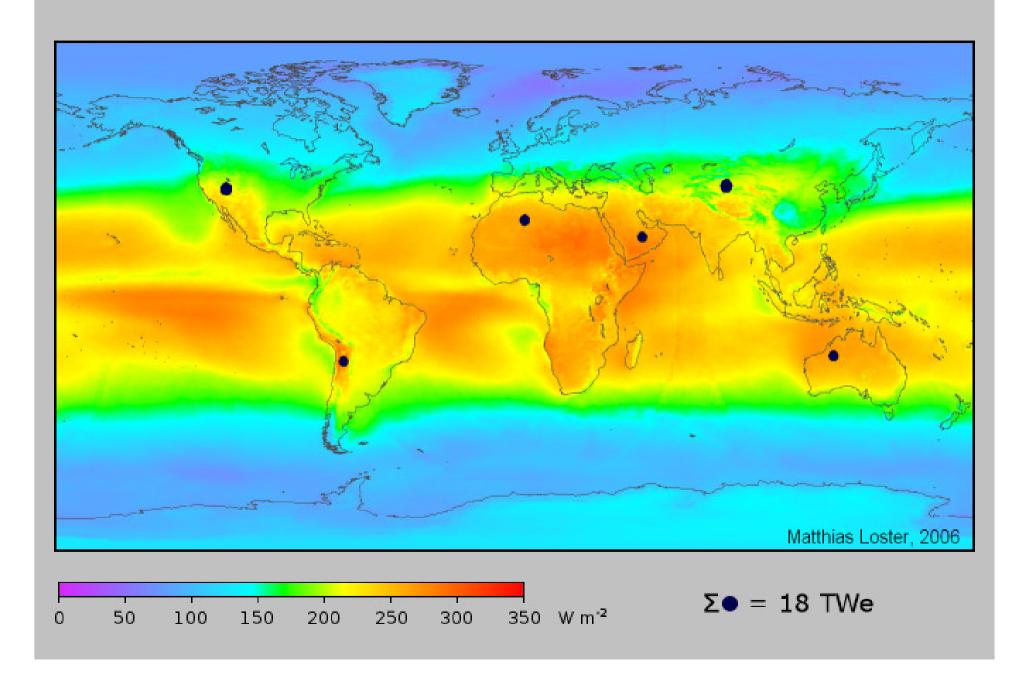
power received on earth

$$P_e = P_S \cdot \frac{\pi \cdot R_e^2}{4\pi \cdot (AU)^2}$$

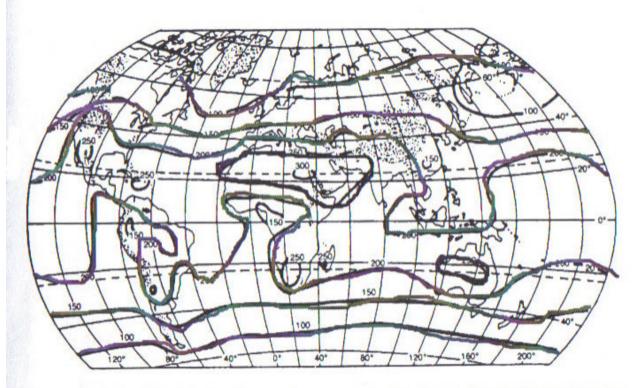
with $\sigma = 5.67 \ 10^{-8} \ W/(m^2K^4)$ $R_s = 7 \ 10^5 \ km$ $R_e = 6.4 \ 10^3 \ km$ $AU = 1.5 \ 10^8 \ km$

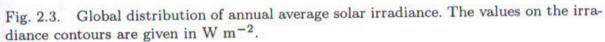
$P_e \approx 1.8 \ 10^8 \ GW$

more than 1000...10000 times the energy demand of mankind

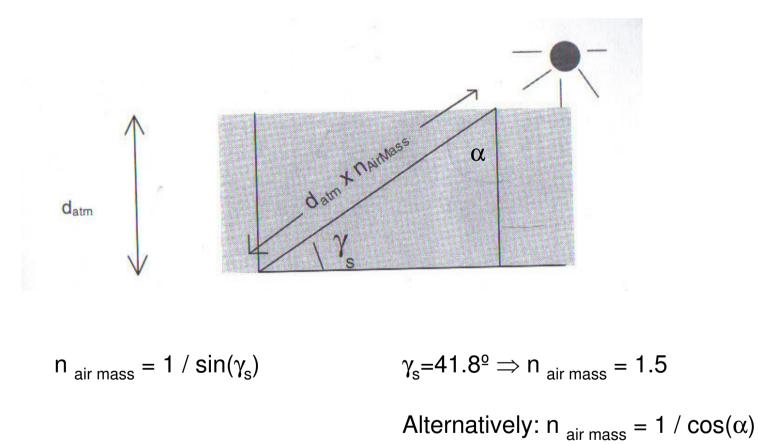

At present mankind needs about 9000GW

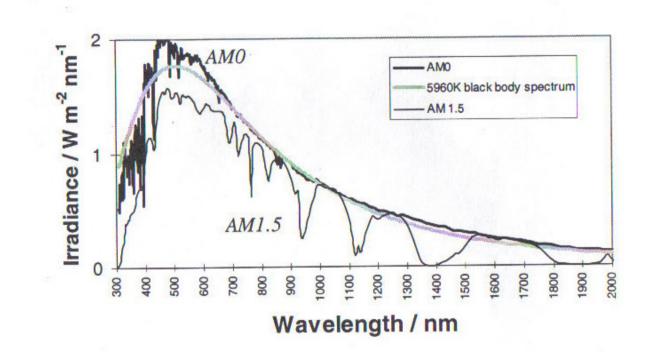
The solar constant


energy flux of sun light to the earth normalized to the area of 1 m²


$$J_{s} = \frac{P_{s}}{4\pi \cdot (AU)^{2}}$$

 $J_{\rm S} = 1.353 \ \rm kW/m^2$


Annual average solar irradiance


Global average: Extraterrestial $<J_E>=1/4.1353W/m^2=338W/m^2$ CH: 115W/m² Saudi-Arabien: 285W/m²

Air Mass: AM1.5, AM1.0....

Definition: For convenience AM1.5 is defined as 1000W/m² integrated irradiance (Typical experimental values at 42^o are 900W/m²) AM0: Extraterrestial; AM1.0: equator

Solar spectrum

-Comparison of AM0 (extraterrestial) with black body radiation of T=5960K and AM 1.5

-Dips in spectrum at 900, 1100, 1400 and 1900nm (H_2O)

and at 1800 and 2600nm (CO_2)

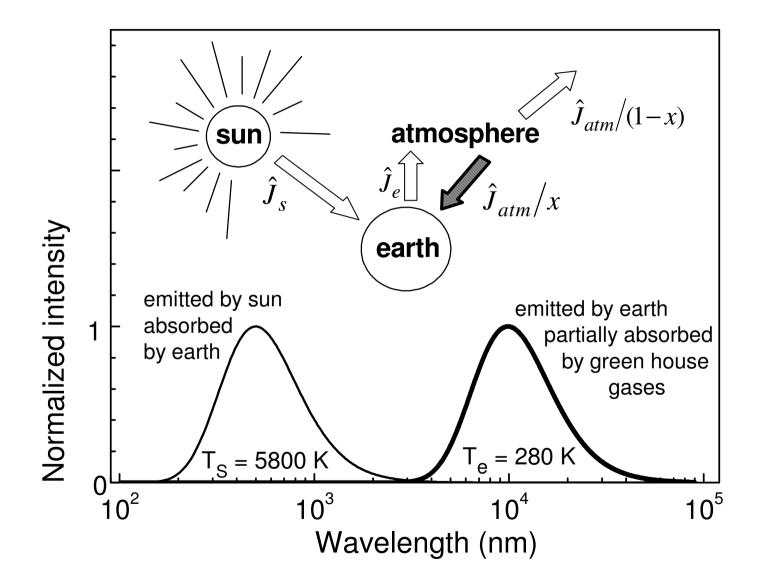
Temperature on earth from energy balance

 $I_{atm} \rightarrow 0$

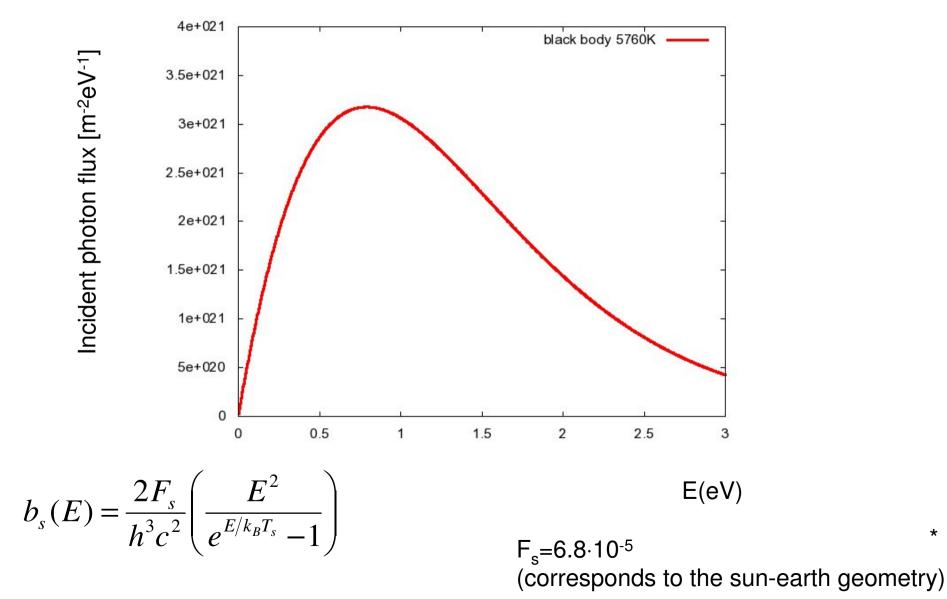
Energy flux from sun to earth

$$I_s = J_s \cdot \pi \cdot R_e^2$$

Black body radiation from earth into free space

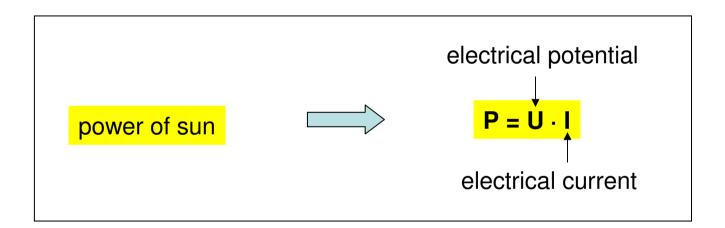

 $I_e = I_s$

$$I_e = \boldsymbol{\sigma} \cdot T_e^4 \cdot 4\boldsymbol{\pi} \cdot R_e^2$$

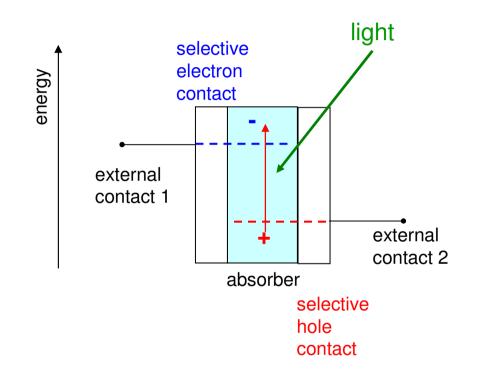

with $\sigma = 5.67 \ 10^{-8} \ W/(m^2 K^4)$ $J_s = 1.35 \ kW/m^2$

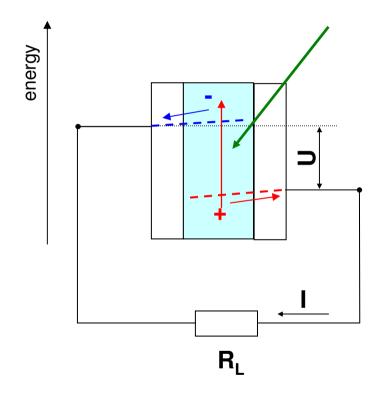
Balance

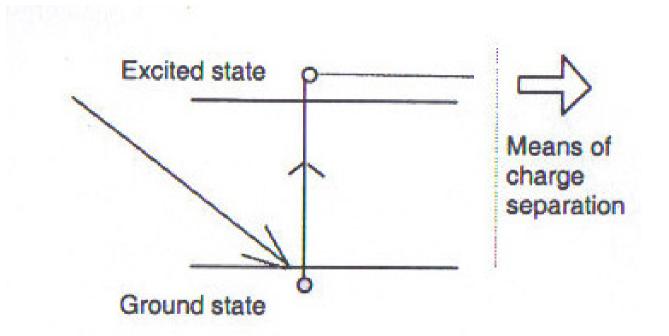
$$\Rightarrow T_e = 4 \sqrt{\frac{J_s \cdot \pi \cdot R_e^2}{\sigma \cdot 4\pi \cdot R_e^2}} \approx 277 \, K$$


Black body radiation at 5760K

*


The solar cell

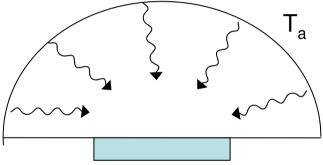

electronic device converting solar power directly into electrical power


A solar cell absorbs light and conducts electrons and holes to separate electron and hole collecting contact.

A major characteristic is the energy conversion efficiency.

Excitation and charge separation

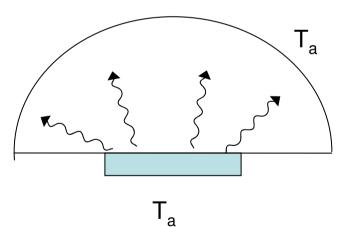
Photon creates electron-hole pair, which is separated by an asymmetric potential. Charge separation prevents relaxation to its initial state.

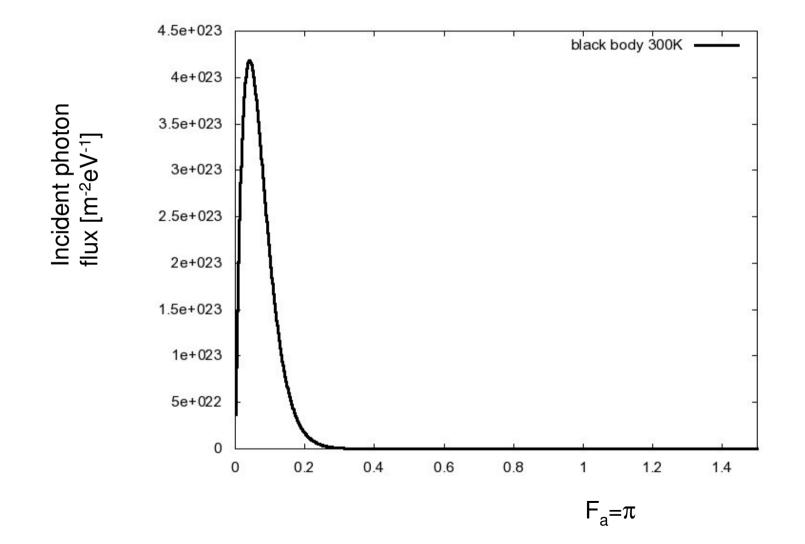

Cell in the dark: Absorption of thermal photons

$$b_{a}(E) = \frac{2F_{a}}{h^{3}c^{2}} \left(\frac{E^{2}}{E^{E/k_{B}T_{a}}-1}\right)$$

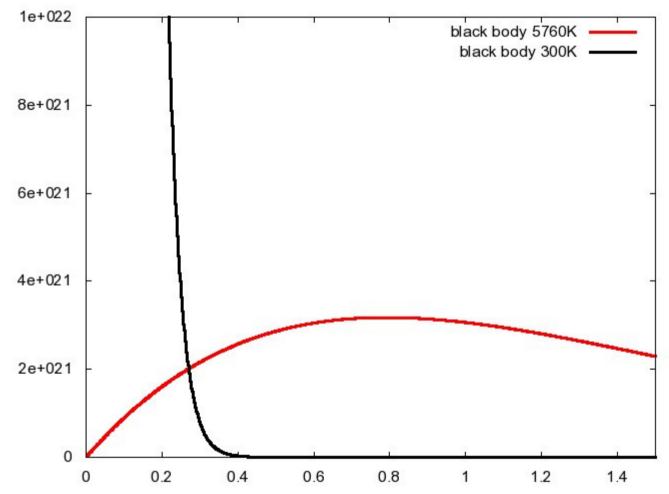
b_a : incident photon flux h: Planck's constant c: speed of light k_B: Boltzmann constant E: Energy Thermal photons are absorped from the environment of Temperature T_a F_a : geometry factor; $F_a = \pi$ for hemisphere

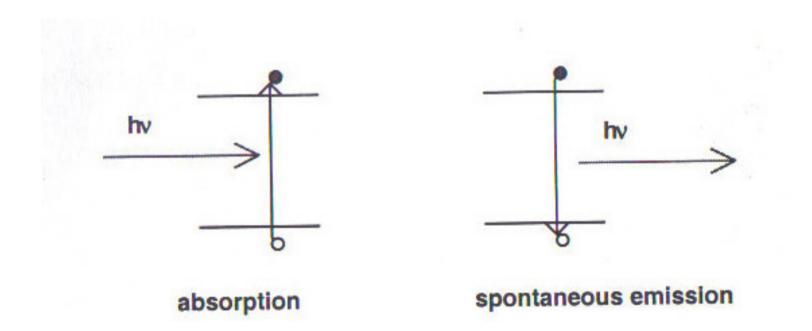
The equivalent current density j_{abs} absorbed from the ambient:


$$j_{abs}(E) = q(1 - R(E))a(E)\frac{2F_a}{h^3c^2}\left(\frac{E^2}{E^{E/k_BT_a} - 1}\right)$$

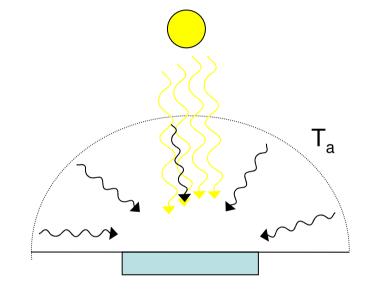

Cell in the dark: Emission of thermal photons

$$j_{rad}(E) = q(1 - R(E))\varepsilon(E)\frac{2F_a}{h^3c^2}\left(\frac{E^2}{E^{E/k_BT_a}}-1\right) = q(1 - R(E))\varepsilon(E)b_a(E)$$


In equilibrium: Kirchoff's law $\varepsilon(E)=a(E)$


Black body radiation at 300K

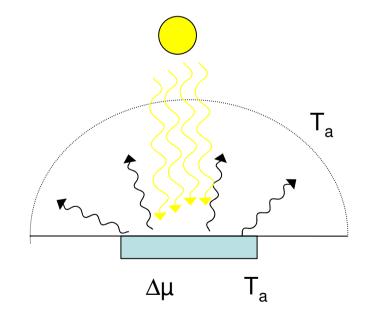
Comparison of black body radiation at 300K and 5760K


Absorption and spontaneous emission

Under illumination (absorption)

$$b_{s}(E) = \frac{2F_{s}}{h^{3}c^{2}} \left(\frac{E^{2}}{E^{E/k_{B}T_{s}}-1}\right)$$

Ts: Temperature of the sun $F_s = \pi \sin^2 \theta_s = \pi / 4.6 \cdot 10^4$ $\theta_s = 0.26^{\circ}$



$$j_{abs}(E) = q(1 - R(E))a(E)(b_s(E) + (1 - F_s / F_a)b_a(E))$$

Under illumination (emission)

Depends on the $\Delta\mu$. When electrons are at raised energy, relaxation is more frequent: Generalized Planck's radiation law:

$$b_{e}(E) = \frac{2F_{a}}{h^{3}c^{2}} \left(\frac{E^{2}}{E^{(E-\Delta\mu)/k_{B}T_{a}}-1}\right)$$

 $j_{rad}(E) = q(1 - R(E))\varepsilon(E)b_e(E, \Delta\mu)$

Net current density under illumination

Under the assumption that $\varepsilon(E)=a(E)$ and $\Delta\mu=$ const across the cell

$$j_{abs}(E) - j_{rad}(E) = q(1 - R(E))a(E)(b_s(E) + (1 - F_s / F_a)b_a(E) - b_e(E, \Delta\mu))$$

Net absorption:
$$j_{abs-net}(E) = q(1-R(E))a(E)(b_s(E) - \frac{F_s}{F_a}b_a(E))$$

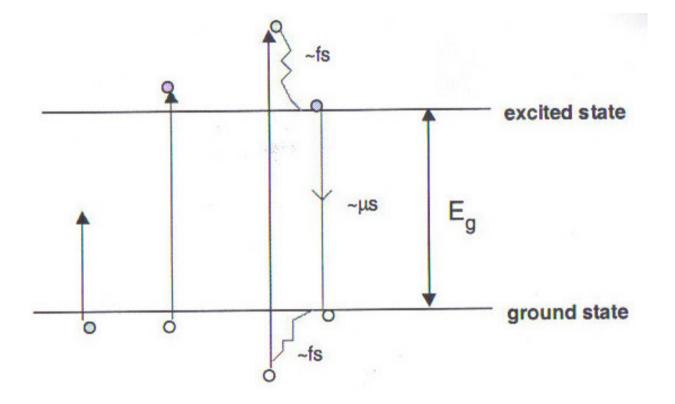
Net Emission Radiative recombination

 $j_{rad-emission}(E) = q(1 - R(E))a(E)(b_e(E, \Delta \mu) - b_e(E, 0))$

Photocurrent

$$J_{sc} = q \int_{0}^{\infty} \eta_{c}(E) (1 - R(E)) a(E) (b_{s}(E) - \frac{F_{s}}{F_{a}} b_{a}(E)) dE \approx q \int_{0}^{\infty} \eta_{c}(E) (1 - R(E)) a(E) (b_{s}(E)) dE$$

 η_{C} : probability that electron is collected


cf.
$$J = q \int_{0}^{\infty} QE(E) \cdot b_{s}(E) dE$$

Quantum efficiency: $QE(E) = \eta_C(E)(1-R(E))a(E))$

For non-reflecting material: R(E)=0 and perfect charge separation $\eta_C=1$:

$$QE(E) = a(E) = \begin{cases} 1 & E \ge E_g \\ 0 & E < E_g \end{cases}$$

Two band photoconverter

Photons with $E >> E_g$ have the same effect like electrons with $E = E_g$ Photocurrent is rather proportional to photon flux and not photon energy But photons with $E < E_g$ can not create electron hole pairs

Dark current

Assumption:

-only loss process is radiative relaxation of electrons

through spontaneous emission

-No non-radiative losses due to scattering at defects in the material

$$J_{dark} = q \int_{0}^{\infty} (1 - R(E)) a(E) (b_e(E, \Delta \mu) - b_e(E, 0)) dE$$

where $\Delta \mu = qV$

Dark current is related to emitted flux, which is increased with increasing voltage

Net cell current density

$$J(V) = J_{sc} - J_{dark}(V) = q \int_{0}^{\infty} (1 - R(E))a(E)(b_{s}(E) - (b_{e}(E, \Delta \mu) - b_{e}(E, 0)))dE$$

incoming flux emitted flux

For step-like absorption $(E>E_g)$:

$$J(V) = J_{sc} - J_{dark}(V) = q \int_{E_g}^{\infty} b_s(E) - (b_e(E, \Delta \mu) - b_e(E, 0)) dE$$

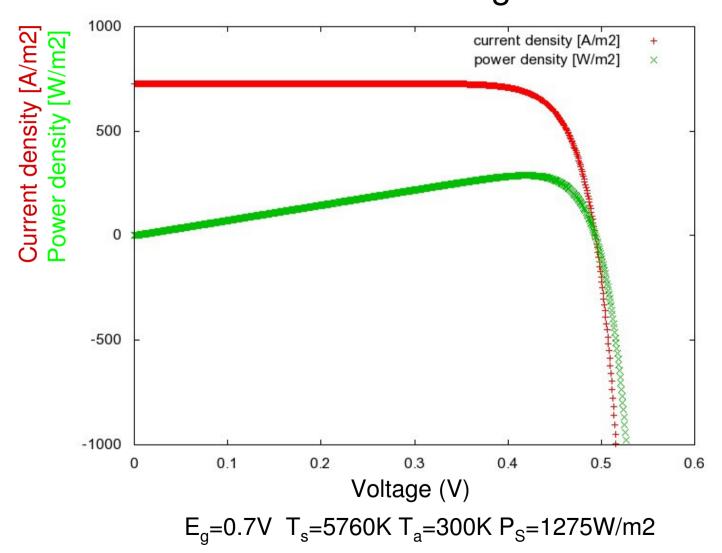
J(V) depends strongly on voltage:

$$J(V) = J_{sc} - J_0 \left(e^{qV/k_B T} - 1 \right)$$

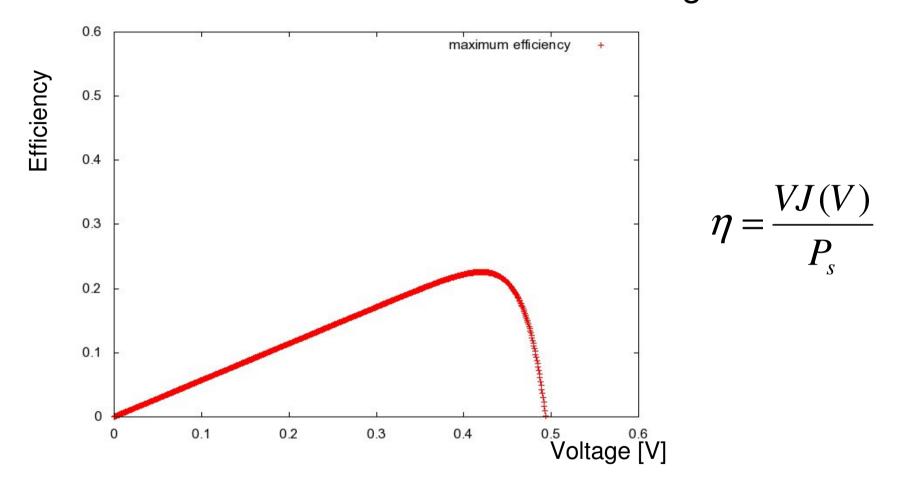
at $V=V_{oc}$ the total emitted flux balances the absorbed flux

Limiting efficiency

Incident power:
$$P_s = \int_0^\infty E \cdot b_s(E) dE$$

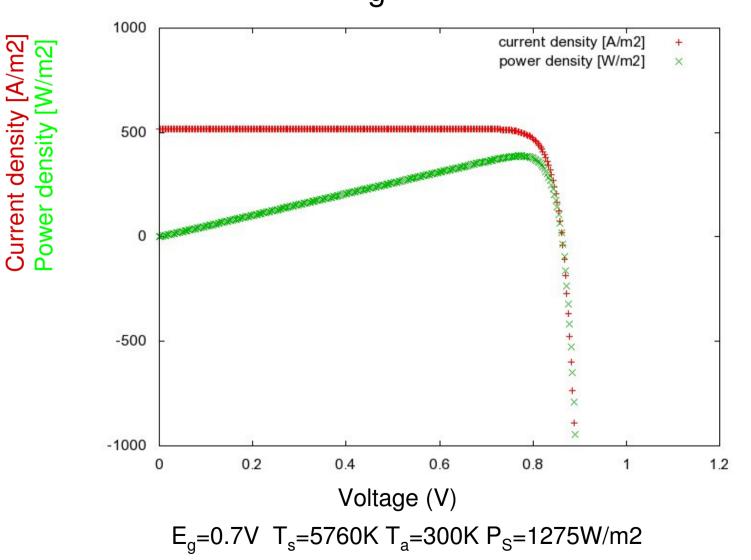

Output power: P = V J(V)(assumption no Ohm's losses)

Power conversion efficiency: $\eta = \frac{VJ(V)}{P_s}$

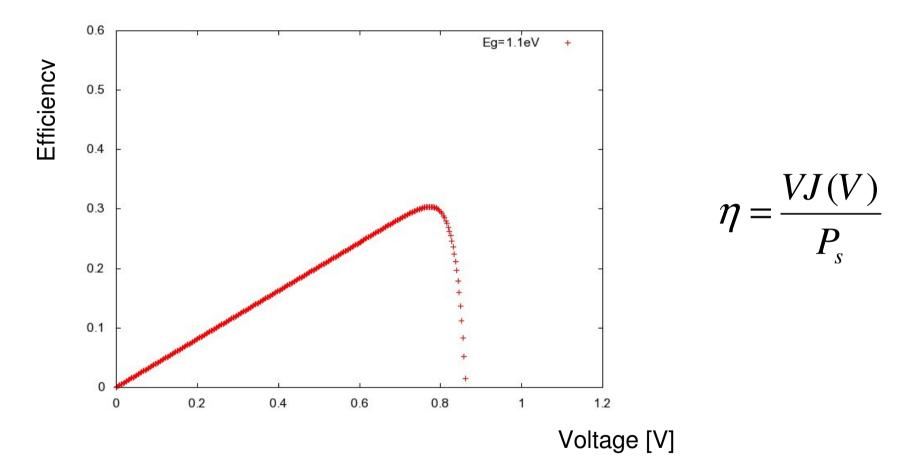

Maximum efficiency is achieved when:

$$\frac{d}{dV} \big(J(V) V \big) = 0$$

Maximum current and power densities with E_g=0.7eV

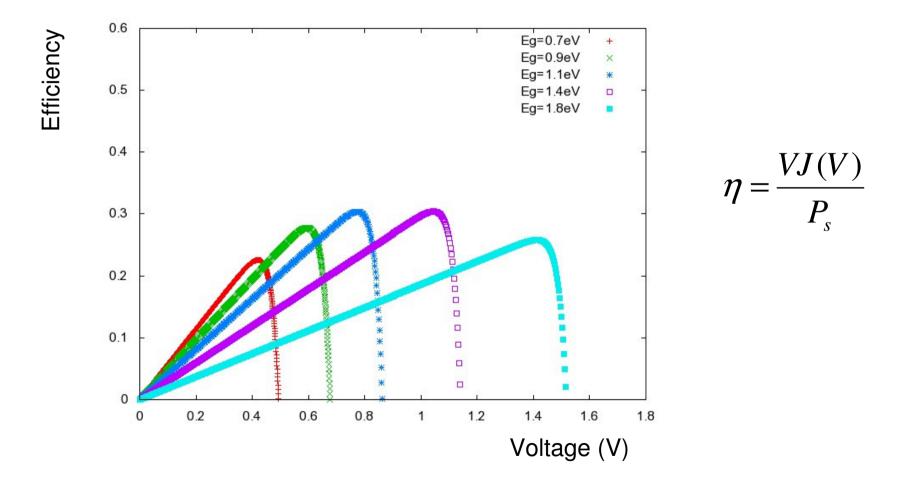


Maximum efficiency for $E_g=0.7eV$

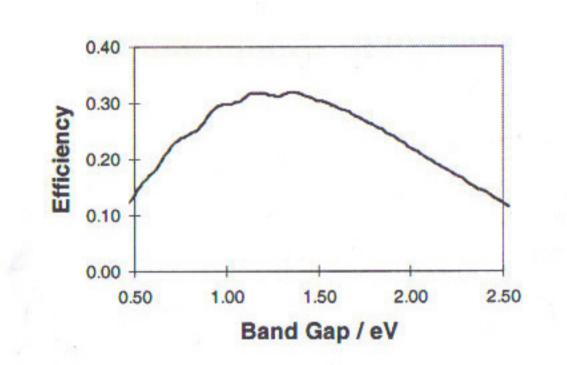


Best performance at V_m =0.45V with 22.5%

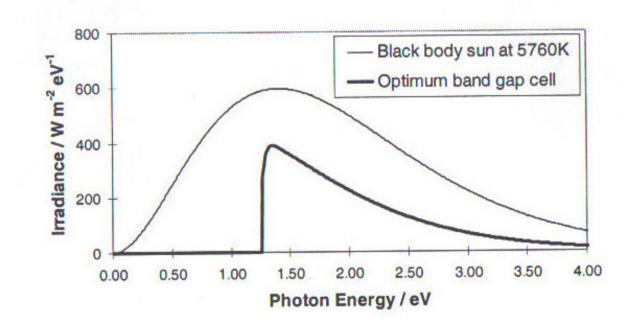
Maximum current and power densities with $E_g=1.1eV$



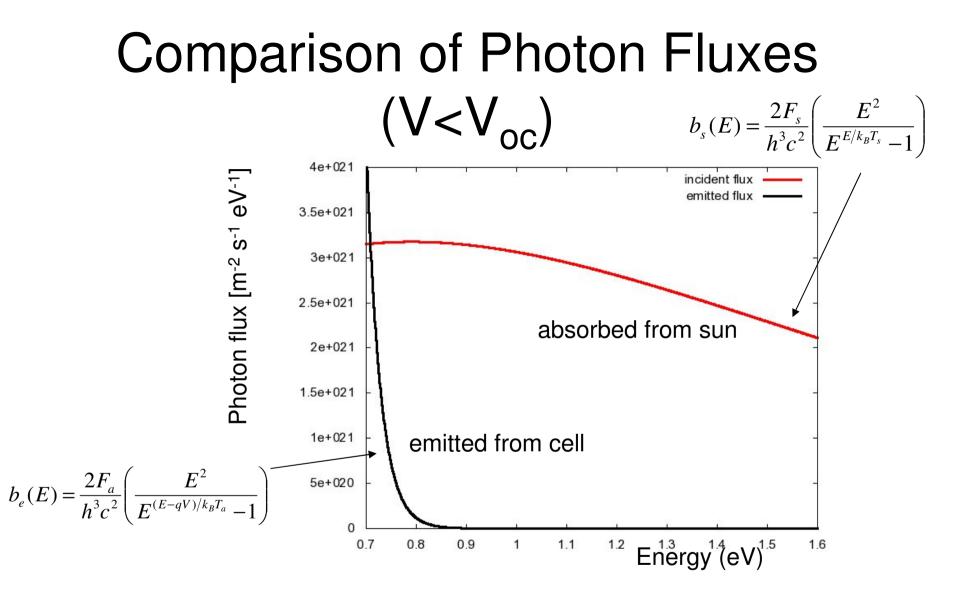
Maximum efficiency for $E_g=1.1eV$


Best performance at V_m =0.77V with 30%

Maximum efficiency for different band gaps

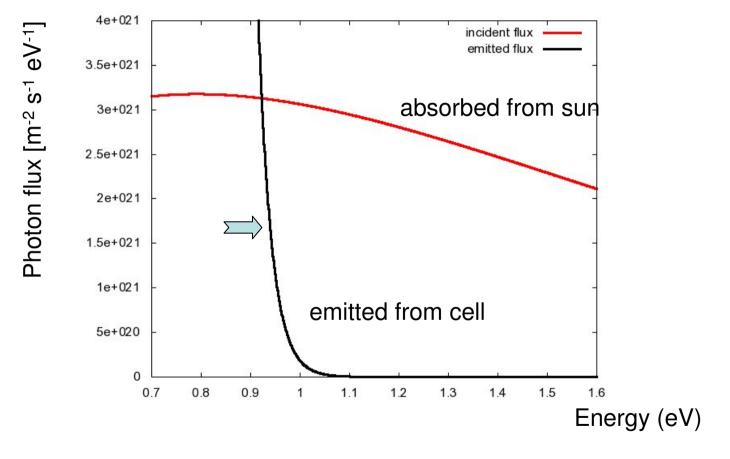

 E_q =0.7-1.8V T_s =5760K T_a =300K P_s =1275W/m2

Limiting efficiency for a single band gap cell in AM 1.5



Optimum of a single band gap cell is 33% at 1.4eV

Power spectrum of a black body at 5760K and power available to a optimum band gap cell



Photons with E<Eg are not used Photons with E>>E_a have the same effect as $E=E_a$

V=0.4V E_g =0.7V T_s =5760K T_a =300K P_s =1275W/m²

Comparison of Photon Fluxes (V>Voc)

V=0.6V E_g =0.7V T_s =5760K T_a =300K P_s =1275W/m²

Requirements for ideal photoconverter

• Energy gap E_g

- •All incident radiation with $E>E_g$ is absorbed
- •Each photon creates one electron-hole pair
- •Excited pairs do not recombine, except radiatively, as required by the the balance
- •Charges are completely separated
- •Charges are transported without losses

Energy gap E_g

The optimum band gap for AM1.5 of 1.4eV with 33%

III-V-semiconductors: GaAs 1.42eV (2009: 26% achieved) InP 1.35eV

but expensive

Silicon 1.1eV would give a maximum efficiency of 30% (2009: 24.7%) Cheap and high quality crystals available, but energy intensive production

CdTe and CuInGaSe₂ are developed and have low energy production costs (2009: 19.9%)

Other parameters

Light absorption: Almost perfect absorption with E>Eg is achieved for layer thicknesses of 10-100 microns

Charge separation: Asymmetry is realized with pn-junctions (either highly doped layers of same materials or different materials) Junction quality is of central importance. (especially large areas)

Lossless transport:

Good Ohmic contacts, low resistance material for conduction (serial resistance), No leakage current (parallel resistance)

Optimum load resistance:

Should be optimized to match best operating point For most applications rather arrays than individual cells are to be optimized

Reasons for losses

- Reflection at front surface
- Non-radiative recombination of carriers (defect sites trap charges, which subsequently recombine)
- Voltage drop due to series resistance $\Delta \mu \neq qV$

Classification ^a	Effic. ^b (%)	Area ^c (cm ²)	V _{oc} (V)	$J_{\rm sc}$ (mA/cm ²)	FF ^d (%)	Test centre ^e (and date)	Description	
Silicon								
Si (crystalline)	$\textbf{25.0} \pm \textbf{0.5}$	4.00 (da)	0.705	42.7	82.8	Sandia (3/99) ^f	UNSW PERL	12
Si (multicrystalline)	$\textbf{20.4} \pm \textbf{0.5}$	1.002 (ap)	0.664	38.0	80.9	NREL (5/04) ^f	FhG-ISE ¹³	
Si (thin film transfer)) 16.7 ± 0.4	4.017 (ap)	0.645	33.0	78.2	FhG-ISE (7/01) ^f	U. Stuttgart (45 µm thick) ¹⁴	
Si (thin film submod	ule) 10.5 ± 0.3	94.0 (ap)	0.492 ^g	29.7 ^g	72.1	FhG-ISE (8/07) ^f	CSG Solar (1-2 µm on glass; 20 cells) ¹⁵	
III-V cells								6
GaAs (crystalline)	$\textbf{26.1} \pm \textbf{0.8}$	0.998 (ap)	1.038	29.7	84.7	FhG-ISE (12/07) ¹	Radboud U. N	2 · · ·
GaAs (thin film)	$\textbf{26.1} \pm \textbf{0.8}$	1.001 (ap)	1.045	29.5	84.6	a sea anone for the set	Radboud U. N	w
GaAs (multicryst	104108	1011 (0)	0.004	22.2	70.7	NDEL (11/05)	DTI Go subst	
Thin film chalcoger P CIGS (cell)	ROGRESS IN PHOTOVOLTAIC trog. Photovolt: Res. Appl. 2009; ublished online in Wiley InterSc	17:85-94			2/pip.88()		d ¹⁷ on glass ¹⁸ serial cells ¹⁹
Thin film chalcoger CIGS (cell) CIGS (submodule CdTe (cell) Amorphous/nanocry Si (amorphous) Si (nanocrystallir Photochemical	trog. Photovolt: Res. Appl. 2009; ublished online in Wiley InterSc	17:85–94 ience (www.interscie DRT COMMUNIC Effici	ence.wiley.co ATION	om) DOI: 10.100				on glass ¹⁸
Thin film chalcoger CIGS (cell) CIGS (submodule CdTe (cell) Amorphous/nanocry Si (amorphous) Si (nanocrystallin Photochemical Dye sensitised Dye sensitised (s Dye sensitised (s Organic Organic polymer	rog. Photovolt: Res. Appl. 2009; ublished online in Wiley InterSc Research SHO Solar Cell	17:85–94 ience (www.interscie PRT COMMUNIC Efffici 3) hery ² , Yoshihiro H nce, University of New ry, 1617 Cole Boulevar ial Science and Techno	ence.wiley.co ATION ENC ishikawa ³ a South Wales, . d, Golden, . Co logy (AIST), F	om) DOI: 10.100 y Tab and Wilhelm W Sydney, 2052, Aust. 0 80401, USA Research Center for	Varta ⁴ ralia Photovol	taics (RCPV), Central 2, Umezo	mo 1-1-1, Tsukuba,	on glass ¹⁸ serial cells ¹⁹ on glass ²⁰ 1 on glass) ²² l cells ²⁴ cells ²⁵
Thin film chalcoger CIGS (cell) CIGS (submodule CdTe (cell) Amorphous/nanocry Si (amorphous) Si (nanocrystallin Photochemical Dye sensitised Dye sensitised (s Dye sensitised (s Dye sensitised (s Organic Organic polymer	Prog. Photovolt: Res. Appl. 2009; ublished online in Wiley InterSc Research SHO Solar Cell Version 3 Martin A. Green ^{1*,†} , Keith En ARC Photovoltaics Centre of Exceller Vational Renewable Energy Laborato Vational Institute of Advanced Industri baraki 305-8568 Japan	17:85–94 ience (www.interscie PRT COMMUNIC Efffici 3) hery ² , Yoshihiro H nce, University of New ry, 1617 Cole Boulevar ial Science and Techno	ence.wiley.co ATION ENC ishikawa ³ a South Wales, . d, Golden, . Co logy (AIST), F	om) DOI: 10.100 y Tab and Wilhelm W Sydney, 2052, Aust. 0 80401, USA Research Center for	Varta ⁴ ralia Photovol	taics (RCPV), Central 2, Umezo	mo 1-1-1, Tsukuba,	on glass ¹⁸ serial cells ¹⁹ on glass ²⁰ 1 1 on glass) ²² 1 cells ²⁴
Thin film chalcoger CIGS (cell) CIGS (submodule CdTe (cell) Amorphous/nanocry Si (amorphous) Si (nanocrystallin Photochemical Dye sensitised Dye sensitised (s Dye sensitised (s Organic Organic polymer	Prog. Photovolt: Res. Appl. 2009; ublished online in Wiley InterSc Research SHO Solar Cell Version 3 Martin A. Green ^{1*,†} , Keith En ARC Photovoltaics Centre of Exceller Vational Renewable Energy Laborato Vational Institute of Advanced Industri baraki 305-8568 Japan	17:85–94 ience (www.interscie PRT COMMUNIC Efffici 3) hery ² , Yoshihiro H nce, University of New ry, 1617 Cole Boulevar ial Science and Techno	ence.wiley.co ATION ENC ishikawa ³ a South Wales, . d, Golden, . Co logy (AIST), F	om) DOI: 10.100 y Tab and Wilhelm W Sydney, 2052, Aust. 0 80401, USA Research Center for	Varta ⁴ ralia Photovol	taics (RCPV), Central 2, Umezo Heidenhofstr. 2, D-79110 Freibu	mo 1-1-1, Tsukuba,	on glass ¹⁸ serial cells ¹⁹ on glass ²⁰ 1 on glass) ²² l cells ²⁴ cells ²⁵ P3HT/PCBM) ²⁷

Ways to improve

- Concentrators
- Tandem cells
- Organic cells with a variety of band gaps

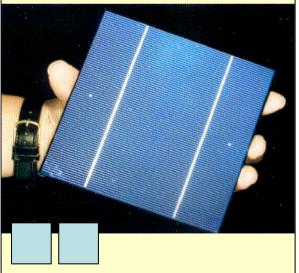
Types of solar cells with regard to technology

Concentrator systems

Ge / In_xGa_{1-x}As / In_xGa_{1-x}P world record: **41.6%** module efficiency: 28% system efficiency: 23%

direct sun light is demanded

need for optical tracking



Si-wafer-based

c-Si, mk-Si world record : 24.7% module efficiency : 18%

energy intensive production of Si (very high purity needed)

dominant on market

Thin film

a-Si:H, nc-Si, CdTe, Cu(In,Ga)(S,Se)₂ nanostructured solar cells organic solar cells world record : 19.9% Cu(In,Ga)Se₂

integrated series connection

largest cost reduction of cost potentials

Material mit Bandgaps

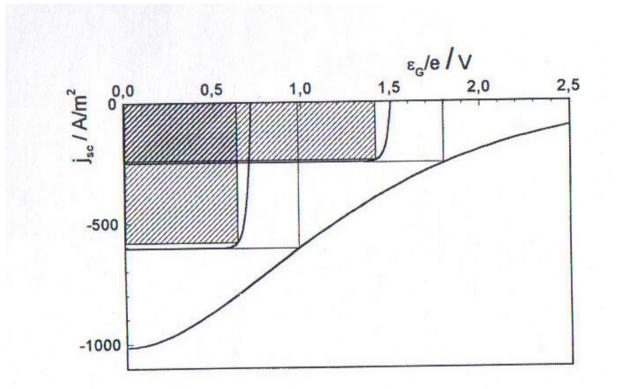


Abb. 8.2 Kennlinien von zwei Solarzellen mit Bandabstand $\varepsilon_{GI} = 1.8 \text{ eV}$ und $\varepsilon_{G2} = 0.98 \text{ eV}$

Theoretische Effizienz von Tandemzellen

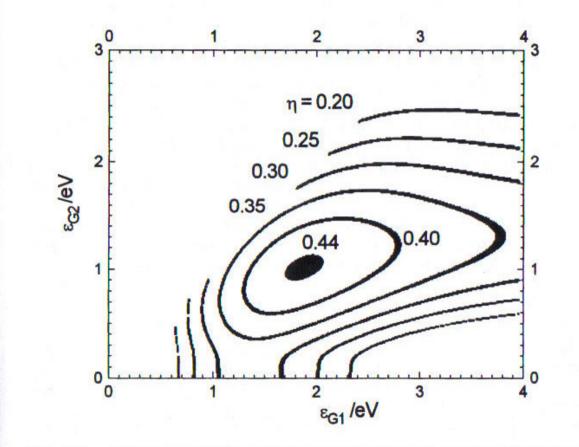
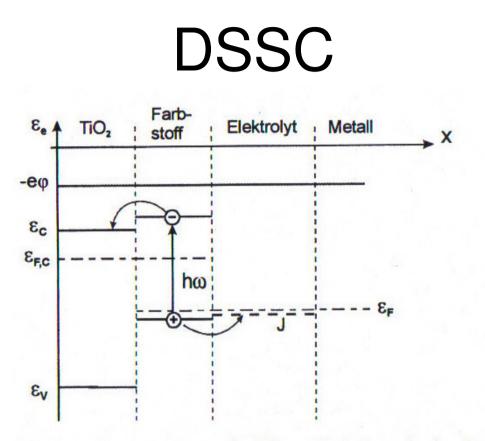



Abb. 8.3 Wirkungsgrad für zwei Tandemsolarzellen mit den Bandabständen ε_{G1} und ε_{G2} bei Addition ihrer Energieströme für das AM0-Spektrum

Farbstoffsolarzelle, in der die Elektron-Loch Paare in dem Farbstoff Rutheniumbipyridil erzeugt werden. Die Elektronen fließen nach links über den n-Leiter TiO_2 ab, die Löcher nach rechts über Jod-Ionen, mit denen der Elektrolyt Acetonitril dotiert ist.

Farbstoff kann an Sonnenspektrum angepasst werden \Rightarrow verbesserter Wirkungsgrad Probleme: Transport der Elektronen und Löcher zu den Elektroden \Rightarrow dünne Schicht Absorption durch monomolekulare Schicht ist gering \Rightarrow Dickere Schichten