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A theoretical model based on the numerical integration of the continuity equation for electrons with trap-
limited density-dependent diffusion and recombination constants is implemented to describe the functioning
of dye-sensitized solar cells (DSSC). The application of the model combines recent theory on charge transport
in nanocrystalline materials with parameters extracted from five simple measurements: the UV/vis spectrum
of the dye in solution, the steady-state current-voltage curve, the open circuit photovoltage versus light
intensity curve, photocurrent transient upon switching on an illumination source, and open-circuit voltage
decay upon switching off the illumination source. As a novel feature not previously included in this kind of
calculations, the model includes an additional term that accounts for the charge transfer from the transparent
conducting oxide (TCO) substrate to the electrolyte solution. The general applicability of the model is illustrated
by applying it to two different types of cell: a TiO2-based solar cell with an organic solvent electrolyte and
a ZnO-based solar cell with a solvent-free electrolyte. It is found that the numerical model is capable of
adequately fitting all data for both systems, resulting in quantitative estimates for the main parameters controlling
solar cell functioning and efficiency. The results show that it is possible to provide a global description of
DSSCs based on fundamental theories for trap-limited transport and recombination using simple experimental
techniques available to every solar cell laboratory. The present paper tries to help fill the gap between pure
theoreticians and experimentalists working on this kind of system.

Introduction

Numerical modeling of solar cells is a powerful tool to
rationalize and understand the fundamentals of the photocon-
version process and to help achieve better performing devices.
Since their advent in 1991,1 solar cells based on sensitized
nanostructured, mesoporous metal oxides (dye-sensitized solar
cells: DSSCs) are among the most promising third generation
devices. DSSCs yield good photoconversion efficiencies, with
values of up to 11.1% under 1 sun, AM1.5G illumination.2,3 In
addition, because of the low cost of materials and the simplicity
of the fabrication process they offer an inexpensive alternative
to conventional silicon-based solar cells.

The performance of DSSCs is based on the combination of
good visible light harvesting, efficient charge separation,
relatively fast transport, and slow recombination. This fortunate
combination is achieved in a system by interpenetrating an
electron-conducting material with a “hole-conducting” medium
on the nanoscale. In typical DSSCs4 the electron-conducting
material is a mesoporous semiconductor oxide such as TiO2 or
ZnO whereas ion transport in the electrolyte solution provides
the charge transport in the second phase. Efficient light
harvesting in the visible range is achieved by adsorbing a
suitable dye at the metal oxide surface.5,6 Much of the current
research on DSSCs involves developing new hybrid3,7 and
organic dyes8,9 or improving the optical design of the devices.10,11

The use of ordered structures for the semiconductor oxide such
as nanorods,12 nanowires,13 or nanotubes14 has also been
explored in order to accelerate transport. Recent developments15-17

involve the use of nonvolatile room temperature ionic liquids

as the second phase with the aim of achieving stable devices
under long-term illumination. Although sometimes ignored, a
crucial component of every DSSC device is a transparent
conducting oxide (TCO) deposited on a glass substrate that acts
as a physical support for the device; even at optimal transparency
and conductivity, the TCO introduces series and shunt resis-
tances that might deteriorate the efficiency of the device. Further
optimization of DSSCs requires a better insight into the
interrelated processes of transport and accumulation of electrons
in the mesoporous oxide phase and recombination of electrons
with electron acceptors. A physical model based on assumptions
related to the fundamental processes taking place in the cell
that can adequately describe the solar cell performance is an
essential tool in the optimization procedure.

Modeling of DSSCs is an open and active issue18,19 that
involves considerations regarding charge transport and recom-
bination20-24 as well as light harvesting and interfacial
kinetics.25-27 Electron transport is a key step in the overall cell
performance, and it is strongly connected with the issue of
recombination. The dynamic competition between electron
transport and recombination determines the electron diffusion
length.18,28,29 To achieve good quantum efficiencies under short
circuit conditions, the electron diffusion length should be larger
than the thickness of the metal oxide film. Electron transport in
mesoporous oxide films impregnated with a highly concentrated
electrolyte is believed to occur mainly by diffusion.30,31 Diffusion
exhibits anomalous features such as extremely slow transport
when compared with compact crystalline materials and diffusion
coefficients that depend strongly on light intensity.32,33 These
anomalous features can be explained by the effect of electron
traps34-38 which are thought to correspond to intraband localized
states.37 The presence of the electron traps results in values for
the conductivity and the diffusion coefficient of several orders
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of magnitude lower than values obtained in the corresponding
bulk, crystalline materials. Moreover, the progressive filling of
the traps (as a consequence of increased illumination or applied
bias) leads to electron density-dependent transport coefficients.
The most widely accepted model that gives rise to these features
is the multiple-trapping model.39-41 In this model, transport is
assumed to occur via extended states combined with a succes-
sion of trapping and detrapping events in localized states. The
multiple-trapping model is related to the quasistatic approxima-
tion of Bisquert and Vikhrenko,40 in which it is assumed that
the trapping-detrapping process is much faster than the
characteristic time constants for transport and recombination.
This fact implies that the relative populations of trapped and
free electrons remain at a common equilibrium under small
perturbations of the initial state. Both the multiple-trapping
model and the quasi-static approximation lead to theoretical
expressions to describe electron diffusion42 and electron recom-
bination.43 Combination of both models leads to a compensation
effect that results in electron diffusion length being a constant
when the total electron density is varied.

The widespread use of numerical models for DSSCs has been
hindered by the difficulty of finding appropriate fitting param-
eters or by the complexity of the formalism. Experimental data
are usually reported with little connection to theoretical models
whereas numerical simulations rely on adjustable parameters
that are fitted ad hoc to reproduce very specific measurements.
This situation is originated by the intricacy of the experimental
system studied, which involves the interaction of very different
materials whose properties normally depend on the preparation
procedure. Furthermore, the experimental determination of
parameters required for the most accepted models, such as the
conduction band electron diffusion coefficient or the total trap
density, is not straightforward and depends again on the actual
characteristics of the utilized materials.

The purpose of this paper is to fill the gap between
theoreticians and experimentalists and to propose a simple model
that can be easily applied in combination with standard
experimental techniques, normally used in solar cell character-

ization. The model is based on widely accepted theories such
as the multiple-trapping formalism and incorporates a simple
model for electron recombination, assuming that the recombina-
tion rate has the same density-dependence as the diffusion
coefficient. We show that under these assumptions, the same
results are obtained as those derived from the quasi-static
approximation.43 The model includes an additional term that
accounts for the charge transfer from the TCO substrate to the
electrolyte solution, which results in an important recombination
current at low voltages in the absence of a blocking layer,44,45

and affects the current-voltage curve and the open circuit
voltage decays.

We apply the model to two very different types of solar cell
in order to illustrate its applicability and to show how from the
fitting of the model to the experimental data we can extract
parameters such as the characteristic temperature of the trap
distribution, the recombination constant at zero voltage, the
transfer parameter at the TCO/electrolyte interface, and the
concentration of the adsorbed dye or the diffusion length.

It must be noted that modeling based on impedance spec-
troscopy,44 and the combination of intensity-modulated photo-
current spectroscopy (IMPS) and intensity-modulated photo-
voltage spectroscopy (IMVS),29 also provide powerful methods
to extract these parameters and to gain microscopic information
about the devices. However, the method presented in this paper
utilizes only steady-state measurements and transients, which
are more widely available. The equivalence between frequency-
dependent methods and transients has been demonstrated
recently.46

Theory and Numerical Model

Continuity Equation. The physical model utilized in this
work is based on the numerical integration of the continuity
equation for electrons with appropriate generation, diffusion,
and recombination terms as well as adequate boundary condi-
tions. The continuity equation is solved in a linear geometry
(see Figure 1), with the x-coordinate being the distance to the

Figure 1. Illustration of the multiple-trapping model of transport (left) and the geometry used to solve the continuity equation (right). In the multiple-
trapping model electron transport is assumed to occur via an extended state Ec, but it is slowed down by trapping and detrapping events to and from
localized states (shown as thin arrows) with energies distributed along a certain density of states g(E). This mechanism results in an effective diffusion
coefficient that depends on the Fermi energy EF or on the electron density. The continuity equation considered in this paper takes into account such a
density-dependent diffusion coefficient to obtain an electron density profile along the x-direction. In addition, recombination processes between electrons
and tri-iodide ions and dye cations can occur in the cell under operation (shown as thick arrows). In the present numerical model, the recombination kinetic
constant for this process is assumed to also be density-dependent with the same power exponent as the diffusion coefficient. Appropriate boundary conditions
are imposed at x ) 0 for each value of the applied voltage (Fermi energy) so that the full IV (current-voltage) curve can be computed.
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TCO substrate (working electrode). The model assumes that
transport occurs by multiple-trapping so that the electron
diffusion coefficient is a function of the total electron density.
In addition, the kinetics of recombination to electron acceptors
such as tri-iodide ions or oxidized dye molecules (see Figure
1) is assumed to be electron density dependent. The model
incorporates an additional recombination term that accounts for
electron transfer at the TCO/electrolyte solution interface. Based
on these considerations, the continuity equation for electrons
has the following form,

where n(x,t) is the total number density of electrons (as a
function of the distance to the working electrode and time), G(x)
is the generation rate, D(n) is the density-dependent diffusion
coefficient, kR(n) is the recombination rate, e is the elementary
charge, d the film thickness, and JTCO is the charge-transfer
current density at the TCO/electrolyte interface. The generation
term is a position-dependent function that accounts for electrons
injected into the system as a consequence of illumination through
the working electrode. Electrons are allowed to diffuse toward
the working electrode, which behaves as a collecting interface.
Details on the numerical procedure utilized to solve the
continuity equation can be found in Appendix A.

Electron Density and Trap Distribution. As mentioned
above, we solve the continuity equation using the total electron
density, which includes both free and trapped electrons. The
majority of the electrons are trapped in an exponential distribu-
tion of traps33,47

where E is the energy of the trap with respect to the conduction
band (defined positive), Nt is the total trap density, and R is a
parameter that reflects the average energy of the distribution of
trap states below the conduction band.

If the zero-temperature approximation to the Fermi-Dirac
distribution is assumed, the total electron density corresponds
to the integral of the trap distribution between E ) ∞ and the
quasi-Fermi level, EF. Using the trap distribution in eq 1 we
obtain,

EF(x,t) ) -
kBT

R
ln(n(x,t)

Nt
) (3)

Consequently, the electronic density is a function of the Fermi
energy, and we can define the electron density in the dark and
at zero bias at the contact, n0

0, in terms of the corresponding
Fermi energy, EF

0

The photovoltage under illumination is the difference between
the reference Fermi level in the dark and the quasi-Fermi level

Equation 6 allows determination of the bias dependence of
the electron density at the TCO contact. This is the condition
imposed to apply the boundary condition at the contact as
explained in Appendix A.

Using the total electron density instead of the free electron
density is especially convenient for numerical manipulation
because the variation of the total density with Fermi level is
less pronounced than the free electron density (see eqs 4 and
5 and note that R < 1). This facilitates the numerical solution
of the continuity equation for density-dependent diffusion
coefficients.

Diffusion and Recombination. The electron diffusion coef-
ficient, D, in the nanostructured, mesoporous oxide film has been
found to depend strongly on the electron density,

where Dref is the diffusion coefficient at the reference density
nref. Henceforth we take nref ) n0

0 and Dref ) D0, i.e., we use
the density at zero-bias at the contact as the reference density
to compute the density-dependent diffusion coefficient.

This density dependence expressed in eq 7 has been derived
from theoretical considerations40 and from random walk
simulation.31,41,48 For R ) 0.5, eq 7 recovers a linear dependence
of the diffusion coefficient on density, as studied by Cao et al.49

In the present model, the recombination constant of electrons
with oxidized dye molecules or electron acceptors in the
electrolyte is also taken to be density dependent. We apply the
observation reported in the literature that this constant has the
same electron density dependence as the diffusion coefficient20

where kR
ref is the recombination constant at the reference density.

Again we take nref ) n0
0 and kR

ref ) kR
0 . The foundations of eq 8

have been thoroughly discussed in the references listed in the
bibliography. Hence, an intuitive explanation of eq 8 is based
on the assumption that recombination is transport-limited so that
kR should be proportional to the diffusion coefficient50,51 A more
general derivation assumes that recombination is controlled by
the position of the Fermi level in the same way as it affects the
diffusion coefficient. This is derived in the context of the “quasi-
static approximation”40 that assumes that the trapping-detrapping
process is more rapid than the characteristic time constants for
diffusion and recombination, so that the same Fermi-level
position controls the kinetics of the transport and recombination
with the same power exponent in the total electron density.40

Power-law functionalities for the diffusion coefficient and the
recombination constant are normally found in the experiments,
as revealed by transient spectroscopies52 and electrochemical
techniques.53

The present model includes an extra term corresponding to
charge transfer between the TCO substrate and the electrolyte
solution. The dependence of this reaction on the applied bias
can be described by the Butler-Volmer equation45

∂n(x,t)
∂t

) G(x) + ∂

∂x(D(n)
∂n(x,t)

∂x ) -
kR(n)(n(x,t) - n0

0) +
JTCO

ed
(1)

g(E) )
RNt

kBT
exp(-RE

kBT) (2)

n ) Nt exp(-REF/kBT) (4)

n0
0 ) Nt exp(-REF

0/kBT) (5)

V ) -
(EF - EF

0)

e
)

kBT

Re
ln

nV
0

n0
0

(6)

D(n) ) Dreff(n) ) Dref( n
nref

)1-R/R
(7)

kR ) kR
reff(n) ) kR

ref( n
nref

)1-R/R
(8)
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where J0
TCO is the exchange current density, and b is the cathodic

transfer coefficient. As shown by Cameron and co-workers,54

the introduction of a Butler-Volmer term in the continuity
equation leads to nonideal behavior of the open-circuit voltage
with respect to the logarithm of the light intensity. The
suppression of charge transfer through the TCO/electrolyte
produces ideal behavior with a slope of 26 mV at room
temperature in the semilogarithmic plot of VOC versus light
intensity.

One of the advantages of the present numerical model is that
it allows for the possibility to assume that recombination would
be governed by the electron transfer processes at the nanostruc-
tured metal oxide/electrolyte solution interface, also given by
the Butler-Volmer equation. In this case, recombination is
limited by the interfacial kinetics (transfer-limited) instead of
by the trapping/detrapping process inside the mesoporous oxide
(transport-limited).55 If recombination is transfer-limited, the
electron density dependence of the recombination constant is
also given by a power law but with an exponent equal to b/R
with b being the transfer coefficient at the oxide/electrolyte
interface. In this case, a linear dependence of the photovoltage
versus the logarithm of the light intensity is obtained but with
a nonideal slope. The implications of this scenario have been
thoroughly studied in ref 55.

Recombination and Open-Circuit Voltage Decay. In a
typical open-circuit voltage decay (OCVD) measurement,56 the
light is switched off, and the voltage decay under open-circuit
conditions and in the dark are monitored. In this case no
electrons are injected into the film apart from those already
present and the diffusion term is zero because no macroscopic
gradient is substained within the oxide film at open-circuit.
Hence, the continuity eq 1 reduces to

At relatively high voltages,n > >n0
0. Hence,

Taking into account eq 11 and changing the integration
variable to VOC according to eq 6, we find

where kR(n) is given by eq 8. Note that the same density
dependence of the recombination constant is maintained at open
circuit, even if there is no macroscopic density gradient and
transport toward the TCO external contact. It must be born in
mind that in the transport-limited interpretation of eq 8 electrons
should diffuse to the recombination centers, and this justifies
the power-law dependence of the recombination constant, even
at open circuit. In the quasistatic interpretation of eq 8 the
density dependence of the recombination constant is a conse-
quence of the system to be at equilibrium,40 and this condition
holds also at open circuit.

Solving eq 12 for VOC we obtain the voltage decay curve at
open circuit with two charge-transfer terms, one at the nano-
structured oxide surface with kinetics limited by transport, and
the other at the TCO layer, with kinetics described by the
Butler-Volmer equation. Figure 2 shows the effect of both
terms on the open-circuit photovoltage.

Figure 2 shows that the main effect of the charge transfer at
the TCO is to accelerate the decay. As reported by Cameron et
al.45 and Peter,18 this charge loss can be prevented by the use
of a blocking layer between the TCO/nanostructured-oxidized
interface. In this case, eq 12 can be simplified to the following
form

Taking into account eqs 6 and 8, this equation can be solved
analytically to obtain,

where

Equation 15 coincides with the expression found by Walker
and co-workers43 with a derivation based on the quasi-static
approximation40 if we take for the recombination constant at
zero voltage

where kcb is the recombination constant between conduction
band electrons and electron acceptors, n0

c is the electron density
at the conduction band, and Nc and Nt is the total density of
conduction band states and localized states (traps), respectively.

JTCO ) JTCO
0 {exp[-(1 - b)eV

kBT ] - exp[beV
kBT ]} (9)

∂n
∂t

) -kR(n)(n(t) - n0
0) +

JTCO

ed
(10)

kR(n) -
JTCO

edn
) -1

n
dn
dt

(11)

kR(n) -
JTCO

edn
) - eR

kBT

dVOC

dt
(12)

Figure 2. Open-circuit voltage decays as obtained from the solution
of eq 12 with (solid line) and without (dashed line) the JTCO term.

kR(n) ) - eR
kBT

dVOC

dt
(13)

VOC ) -
kBT/e

1 - R
ln[C1 + C2t] (14)

C1 ) exp((R - 1)eVOC

κT ); C2 )
kR

0

R
(1 - R) (15)

kR
0 ) kcb

NC

Nt
( nc

0

NC
)1-R

(16)
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Using the parameters reported by Walker and co-workers43

(kcb ) 25 s-1, Nc ) 1021 cm-3, Nt 1.3 × 1018 cm-3, nc
0 ) 104

cm-3, R ) T/Tc ) 0.35), we obtain kR
0 ) 2.7 × 10-7 s-1 from

eq 16. Another set of parameters, extracted from the illumination
dependence of the photovoltage in nanocrystalline TiO2, can
be found in the literature26 (Nc ) 4 × 1020 cm-3, Nt ) 2 × 1019

cm-3, nc
0 ) 8 × 103 cm-3). In this case, eq 16 yields kR

0 ) 3.2
× 10-10 s-1. We will compare these theoretical values with the
results of the fittings of the present model with experimental
data.

Experimental Procedures and Extraction of Model
Parameters

To apply the model presented in the previous section to actual
devices and to extract the required parameters, a set of five
different experimental measurements should be carried out: (1)
UV/vis spectrum of the dye in solution, (2) steady-state
photocurrent versus voltage curves at fixed light intensity, (3)
photocurrent rise upon switching on an illumination source at
fixed light intensity, (4) open circuit photovoltage versus light
intensity, and (5) open circuit voltage decay upon switching
off the light source. Table 1 shows which parameters can be
extracted from each type of measurement.

We have studied two types of solar cell: Cell T, corresponding
to a nanostructured, mesoporous TiO2 cell sensitized with N719
dye and a low-viscosity organic electrolyte solution, and Cell
Z, consisting of a nanostructured, mesoporous ZnO cell
sensitized with N719 and an ionic liquid electrolyte solution.
Details on the experimental procedures are presented in Ap-
pendix B.

According to the strategy devised above, the following steps
were carried out for the specified cells:

1. The UV/vis spectrum of the N719 dye in ethanol solution
at Csol ) 0.16 mM was obtained. Using the Lambert-Beer law,
the absorption coefficient of the dye in solution εsol(λ) was
obtained.

2. The experimental current-voltage curves of the studied
cells were obtained at 1 sun illumination. The experimental
photocurrent under short circuit conditions was then used to fit
the concentration of dye adsorbed in the surface of the oxide
Cdye by solving the model and using eq A5. For this calculation,
we assume that φinj ) 1 for the N719 dye and that the spectrum
of the dye is not modified upon adsorption to the oxide surface.
Alternatively, the quantum yield can be taken as the adjustable
parameter if the concentration of the dye in the cell is known
from desorption measurements or can be estimated from the
internal surface area of the film.20 On the other hand, the open
circuit photovoltage at 1 sun can be used to obtain a first estimate
for the recombination constant kR

0 via eqs 20 and 21. In this

calculation, charge transfer through the TCO/electrolyte interface
is initially neglected.

3. The photocurrent rise curve was registered, measuring the
photocurrent under short circuit conditions as a function of time
upon switching on the illumination at 1 sun. As the numerical
model provides JSC(t), these data can be used to obtain the trap
distribution parameter R from the best fit to the experimental
curve. This calculation is performed assuming that there is
recombination under short circuit conditions neither at the oxide
interface (kR

0 ) 0) nor at the TCO interface (JTCO ) 0).
4. The photovoltage under open circuit conditions was

measured as a function of light intensity between 0.01 and 1
sun. Fitting the data to the numerical model makes it possible
to obtain the value of the transfer coefficient b (from the slope
of the curve at low illumination) and the exchange current
density J0

TCO

5. Knowing the values of Cdye, R, J0
TCO, and b, we can obtain

a first estimate for kR
0 by fitting the model results to the

experimental value of the open circuit photovoltage VOC at 1
sun.

6. The open circuit voltage decay (OCVD) curve was then
measured for the two types of cell starting from the VOC

measured at 1 sun. By fitting the experimental data to the
theoretical curve derived from eqs 9 and 12, we can refine the
estimated values for J0

TCO, and b.
7. Finally the full current-voltage curve is fitted by using

and refining all previously obtained parameters and by adjusting
the series resistance from the maximum power point.

The following parameters were used for the calculations
presented in this paper n0

0 ) 1021 m-3 and D0 ) 10-16 m2 s-1.
If, for the sake of illustration, we take Ec - Eredox ) 1 eV, Nt

)1025 m-3, R ) 0.2 (as reported in ref 18), and apply eq 10
where the E0

F is the redox Fermi level with respect to the
conduction band, we can obtain an approximate value of n0

0 )
1021 m-3. If we consider that under short circuit conditions the
quasi-Fermi level is 0.5 eV, D ) 4 × 10-9 m2 s-1, and applying
eqs 7 and 5, we can obtain the following approximate value of
D0 ) 10-16 m2 s-1. In addition, a film thickness of d ) 15 µm
was assumed for the cells.

Results and Discussion

In Supporting Information Figure S1, we show the absorb-
ance spectrum for the N3-dye (similar to the N719 dye) in
ethanolic solution at known concentration. This provides the
absorption coefficient as a function of wavelength between 350
and 800 nm.

As discussed in the previous section, the short-circuit pho-
tocurrent transient was obtained from the model, ignoring all
recombination terms. Results compared with the experimental
data are shown in Figure 3. As reported in previous work,20 the

TABLE 1: Summary of the Model Parameters Extracted from Different Experimental Methods

method measurement parameter obtained

1 UV/vis spectrum dye absorption coefficient (εsol(λ))

2 steady-state current-voltage curve dye concentration in cell or quantum yield from JSC

recombination constant at zero bias, kR
0 , from VOC

series resistance R from maximum power point

3 JSCvs time (current rise upon switching on light) trap distribution parameter, R

4 VOC vs light intensity electron transfer parameter at TCO interface, b
+
exchange current density at TCO interface, J0TCO5 VOC vs time (decay upon switching off light)
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adjusted R parameter becomes smaller as the time to reach the
stationary state is shorter. This reflects the effect of the density
dependence of the diffusion coefficient via eq 12. The steady-
state photocurrent at 1 sun is fitted by varying the dye
concentration in the numerical solution of the model. The results
for R and Cdye for both cells can be found in Table 2.

In a similar way, as the experimental steady-state short-circuit
photocurrent can be utilized to estimate the light-harvesting
characteristics of the cell (via the dye concentration in the
present case), the steady-state open-circuit photovoltage at 1
sun is used to obtain a first estimate of the recombination
constant kR

0 from eqs 14 and 15. Here the charge transfer through
the TCO/electrolyte interface is initially neglected. The value
thus obtained is used to extract the remainder of the parameters
from the VOC vs light intensity and VOC vs time experimental
data.

Results for the open-circuit photovoltage as a function of light
intensity from the numerical model and the experiments can be
found in Figure 4. We observe ideal behavior for both cells at
high illumination intensity, where the slope of the VOC vs
log(light intensity) is close to 26 mV. At low light intensity,
the charge transfer through the TCO/electrolyte interface
becomes more important.

The numerical results coincide with the findings of Cameron
et al.45 The transfer coefficient that produces the best fit to the
experimental data can be obtained from the slope of the curve
in the low illumination regime (where charge transfer through
the TCO/electrolyte interface is assumed to predominate) with
the relation θ = 26 mV/b, as predicted by eq 9. It must be
noted that a nonideal slope can also occur at high illumination
intensity if recombination is transfer-limited as discussed in ref
55. However, this is not the case for the cells studied here, as
the photovoltage exhibits a linear dependence with ideal slope
at high illumination intensity.

In Figure 5 the voltage decay at switching off the light under
open-circuit conditions is reported. The OCVD curves allow
determination of the electron transfer current from the TCO to
the solution, J0

TCO, and refine the value for b by solving the model
at open circuit as stated by eqs 9 and 12. It is observed that the
voltage decay is mainly controlled by recombination at the TCO
interface; hence, this measurement has a low level of precision

Figure 3. Short-circuit photocurrent transients as obtained from the numerical model without recombination, and experimental data for the two
different types of cell. The effect of using different values of R is shown in the left plot.

TABLE 2: Parameters Obtained for the Studied Cells

parameter Z cell (ZnO) T cell (TiO2)

Ccell (M) 0.14 0.25
kR

0 (s-1) 9.010-7 3.110-9

R 0.18 0.2
b 0.50 0.55
J0

TCO (A cm-2) 1.010-4 1.110-5

R (Ω) 37.5 11.3
L (µm) 10.5 180

Figure 4. Photovoltage versus light intensity at open circuit as obtained from the experiments and the numerical model.
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for the determination of the recombination characteristics
between photoinjected electrons in the nanostructured oxide and
the electron acceptors in the electrolyte solution. As noted
previously by several authors,18,43,57 only if an appropriate
blocking layer is deposited on the TCO substrate will the OCVD
curves reflect recombination from the nanostructured oxide.

Once all light harvesting (εdye, Ccell), diffusion (R), and
recombination (kR

0 , b, J0
TCO) parameters are fixed, we can

construct the simulated current-voltage plot, as shown in Figure
6. As a final parameter to complete the fitting procedure, the
internal series resistance of the cell is incorporated by adjusting
the current at maximum power point as described in Appendix
A.

A collection of the best fitting parameters for the studied cells
are reported in Table 2. We observe that the better performance
of cell T with respect to cell Z arises from better light harvesting
properties as indicated by a larger dye concentration in the cell,
probably due to a larger surface area of the semiconductor film,
a lower recombination rate from the semiconductor as indicated
from the larger recombination constant for the ZnO cell, and a
lower series resistance. The latter parameter is in agreement
with expectations, as cells with ionic liquid electrolytes generally
exhibit a series resistance larger than that of cells with a low-
viscosity organic solvent.58 In addition, cells based on ionic
liquids show strong recombination in comparison with their
organic solvent counterparts,15 which explains the recombination
constant of 1 order of magnitude larger for cell Z. The rest of
the parameters are similar in both cases and coincide with values
previously reported. For instance, an exchange current at the
TCO of j0 e 10-4 A cm-2 has been reported,26 and transfer
coefficients of around 0.5 are common for many reversible redox
couples57

The electron diffusion length in the present model can be
obtained from

Results found for this are also indicated in Table 2. As
expected the diffusion length is of the order of micrometers, as
typically found in DSSCs,18 with larger values found for the
best performing cell. It should be noted that when the diffusion
length is larger than the film thickness, the electron collection
efficiency approaches unity under short circuit conditions, as
was derived from the model.

Conclusions

In this work, we solve the continuity equation with transport
and charge transfer terms in a typical DSSC. The model assumes
that diffusion and recombination from the nanostructured oxide
depend on the total electron density via a power-law term

Figure 5. Open-circuit voltage decay as obtained experimentally and best fits from the numerical model as obtained from the solution of eq 12.

L ) (D0/kR
0 )1/2 (17)

Figure 6. Current-voltage curves for the studied cells. The model
data were obtained by solving the continuity eq 1 so that J is computed
at different values of the voltage V. The data at finite resistance were
obtained from an iterative procedure as described in Appendix A.
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consistent with the multiple-trapping model and the quasi-static
approximation. As a novel feature not previously included in
this kind of calculations, the model includes an additional term
that accounts for the charge transfer from the TCO substrate to
the electrolyte solution. The model allows calculation of short-
circuit photocurrent transients, open circuit photovoltage versus
light intensity, open circuit voltage decay curves, and current-
voltage curves. By comparing these calculations with experi-
mental data, a set of fitting parameters can be extracted and
evaluated.

We have applied the model to two types of cells: a
nanostructured TiO2 mesoporous film and a low-viscosity
organic electrolyte solution, and a nanostructured ZnO meso-
porous and an ionic liquid electrolyte (solvent-free), both
sensitized with N719 dye. When we ignore charge transfer
through the FTO/electrolyte interface, the model predicts ideal
behavior for the photovoltage-light intensity plot and recovers
the theoretical expression for the voltage decay reported
previously in the literature.

Our results show that cells without blocking layers can be
modeled if appropriate parameters for charge transfer at the
TCO/electrolyte interface are introduced. The parameters ob-
tained for the two cells provide a consistent description of the
photovoltaic performance of the devices. According to this
description and the mechanistic assumptions which were
incorporated in the continuity equation, i.e., that recombination
has the same power-law dependence as electron diffusion,
improving the transport characteristics of the nanostructured
oxide film would not imply that the diffusion length and, hence,
the efficiency can be increased.

Finally, it is important to stress the relationship between the
model proposed here and modeling based on quantum mechan-
ical calculations. These have focused commonly on the com-
putation of the isolated dye and the dye-oxide electronic
structure and energy levels.59,60 These techniques provide a
powerful means to derive from first principles the sensitization
efficiency of the dye and its quantum injection yield. This
information, together with diffusion coefficients obtained from
random walk numerical simulation,61can be used as input
parameters in the numerical model presented here, so that the
full IV curve and efficiency can be obtained from first principles
for a given dye/oxide/electrolyte combination.
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Appendix

Appendix A: Numerical Solution of the Continuity
Equation.

Equation 1 is solved by means of the Forward Time Centered
Space (FTCS) method using the Lax scheme and with the
following boundary conditions:20

where nV
0 is the density at the TCO contact and d the film

thickness. These boundary conditions are a consequence of fast
electron transfer at the TCO/mesoporous oxide interface. The
electron density at contact nV

0 is an increasing function of the
applied bias V, as shown below:

with n0
0 being the density in the dark and at zero bias at the

contact, e is the elementary charge, kB the Boltzmann constant,
T the absolute temperature, and R the characteristic parameter
of the trap energy distribution (see discussion in the main text).

The numerical solution of eq 1 with boundary conditions A1-
A2 gives rise to an electron density profile whose gradient at x
) 0 (JSC ) (δn/δx)x)0) originates the photocurrent. The
application of an external bias increases the electron density at
the contact and reduces the gradient, so that the photocurrent
becomes smaller (see Supporting Information Figure S2). The
numerical solution for increasing bias makes it possible to obtain
the full current-voltage (IV) curve from the short-circuit
situation in which V ) 0 up to the open-circuit situation for
which the photocurrent computed from the electron density
gradient is approximately equal to zero.

The generation term G(x) in electrons ·m-3 s-1 is evaluated
from

where R is the reflectance (see Note added in Proof), φinj is the
electron injection yield and εcell is the absorption coefficient of
the cell (m-1) as a function of wavelength, λ. The incident
photon flux I0(λ) (photons m-3 s-1) is given by,

where f is a parameter that is adjusted to give the required solar
irradiance (see Supporting Information Figure S3).

The absorption coefficient of the cell εcell can be related to
the absorption coefficient of the dye in solution εsol, by

where C stands for the concentration of the dye either in solution
or when adsorbed at the mesoporous oxide.

To complete the application of the numerical model, a series
resistance, R, can be introduced into the calculation.20 In this
case, the voltage V entering eq A2 is replaced by V ) V +
JAR, where J is the current density and A the geometrical surface
area. The continuity equation is solved for this new voltage,
and the new current obtained is utilized to modify the voltage.
The process is repeated until consistency between successive
values of J is achieved for a fixed value of R. This consistency

n(x ) 0,t) ) nV
0 ; n(x,t ) 0) ) nV

0 ;
∂n(x,t)

∂x x)d ) 0

(A1)

nV
0 ) n0

0 exp[eRV/kBT] (A2)

G(x) ) ∫λmin

λmax
φinjI0(λ)εcell(λ)(1 - R) exp[-εcell(λ)x]dλ

(A3)

I0(λ) ) 2πfc

λ4 [exp[ hc
λkBT] - 1]-1

(A4)

εcell(λ) ) εsol(λ) ×
Cdye(cell)

Cdye(solution)
(A5)
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was implemented here by assuming convergence of three
significant figures in J.

Appendix

Appendix B: Experimental Details.

Cell T was fabricated according to the following procedure:
The TiO2 nanomaterial was prepared using the sol-gel method,
from titanium(IV) isopropoxide (Sigma-Aldrich, 97%) and acetic
acid (Reasol, 99.7%) in aqueous solution. In a typical synthesis,
15 mL of titanium(IV) isopropoxide was added dropwise to 185
mL of 1 M acetic acid at room temperature with vigorous
stirring. The resulting white suspension was peptized at 85 °C
in an open erlenmeyer flask with stirring for about 13 h, until
a volume of 50 mL remained, corresponding to 80 g L-1 TiO2.
The white peptized colloidal dispersion was subsequently treated
in a steel autoclave with a Teflon linear (Parr Instruments) at
200 °C for 18 h. After hydrothermal treatment, the colloidal
dispersions were sonicated and subsequently further concentrated
at 80 °C to a concentration of 130 g L-1 TiO2. PEG 20,000
(Sigma-Aldrich) was added at a concentration of 40 wt.%, and
the paste was stirred for 24 h to ensure proper mixing. The solar
cell was prepared by consecutively depositing and sintering at
450-500 °C up to three layers using the doctor blading method
onto an F-doped SnO2 (FTO, Hartford Glass, TEC 15) transpar-
ent electrode and sensitized with N719 (Solaronix). The
electrolyte solution used was Iodolyte AN-50 (Solaronix), and
Platisol (Solaronix) was used to prepare a platinized FTO
counter electrode.

Cell Z was prepared according to the following procedure:
ZnO electrodes deposited on F-doped SnO2 transparent elec-
trodes were prepared from commercial ZnO powder (Degussa
VP AdNanoZnO20) and sensitized with N719 (Solaronix) as
explained elsewhere62,63 The ionic liquid electrolyte was com-
posed of 20% 1-methyl-3-propylimidazolium iodide (PMII,
Sigma-Aldrich, > 98%), 80% 1-ethyl-3-methylimidazolium
dicyanamide (EMIDCN, Iolitec, >98%), 0.05 M iodine (Sigma-
Aldrich, g99.5%), 0.1 M lithium iodide (Sigma-Aldrich, 99%),
and 1 M tert-butylpyridine (TBP, Sigma-Aldrich, 96%).

Except for the determination of the photovoltage as a function
of illumination intensity, all measurements were performed at
1 sun (100 mW/cm2 at room temperature) using a Thermo Oriel
Xenon 450 W arc lamp coupled to a water filter and a 325 nm
UV blocking filter. A reference solar cell with temperature
output (Oriel, 91150) was used for calibration. Light intensity-
dependent measurements were performed using neutral density
filters. Photocurrents, photovoltages, current-voltage curves,
and open-circuit voltage decays were carried out by means of
an Autolab/PGSTAT302N station (Ecochemie).

Appendix

Appendix C: Model Parameters.

n(x,t) ) total electron density
n0

0 ) electron density defined at zero voltage n0
0 ) nV)0

0 ) n0(V
) 0)

D0 ) electron coefficient diffusion at zero voltage
R ) the average depth of the distribution of the trap states

energy
kR

0 ) recombination rate at zero voltage of electron in the
conduction band

b ) transfer coefficient
e ) electron charge
c ) speed of light
kB ) Boltzmann constant

T ) temperature
j0
FTO ) exchange current density transfer

d ) thickness of the nanostructured film
φinj ) injection coefficient
εcell ) absorption coefficient of the cell
εsol ) absorption coefficient of the dye in solution
Asol ) absorbance coefficient of the dye in solution
Acell ) absorbance coefficient of the cell
Csol ) concentration of dye in solution
Ccell ) concentration of dye in cell
λ ) light wavelength
Itot ) total irradiance of light
I(λ) ) irradiance as a function of the wavelength
JSC ) short circuit current
VOC ) open circuit voltage
m)θ ) slope in the voltage versus intensity of light curve
R ) inner resistance in the cell
Nt ) total density of traps in the nanostructured film
EF ) Fermi level
nc ) electron density in the conduction band at a specific Fermi

level
nc

0 ) electron density in the dark
Nc ) effective density of states in the conduction band
EF

0 ) Fermi level reference
kc ) recombination rate in the quasi-static approximation

Note Added in Proof. Expression A.3 is utilized under the
strong assumption that the reflectance of the film is equal to
the maximum absorbance at each wavelength so that R )
exp(-alfa d). The application of the model with more realistic
values of the reflectance would lead to a different value of
the dye concentration parameters shown in Table 1.
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