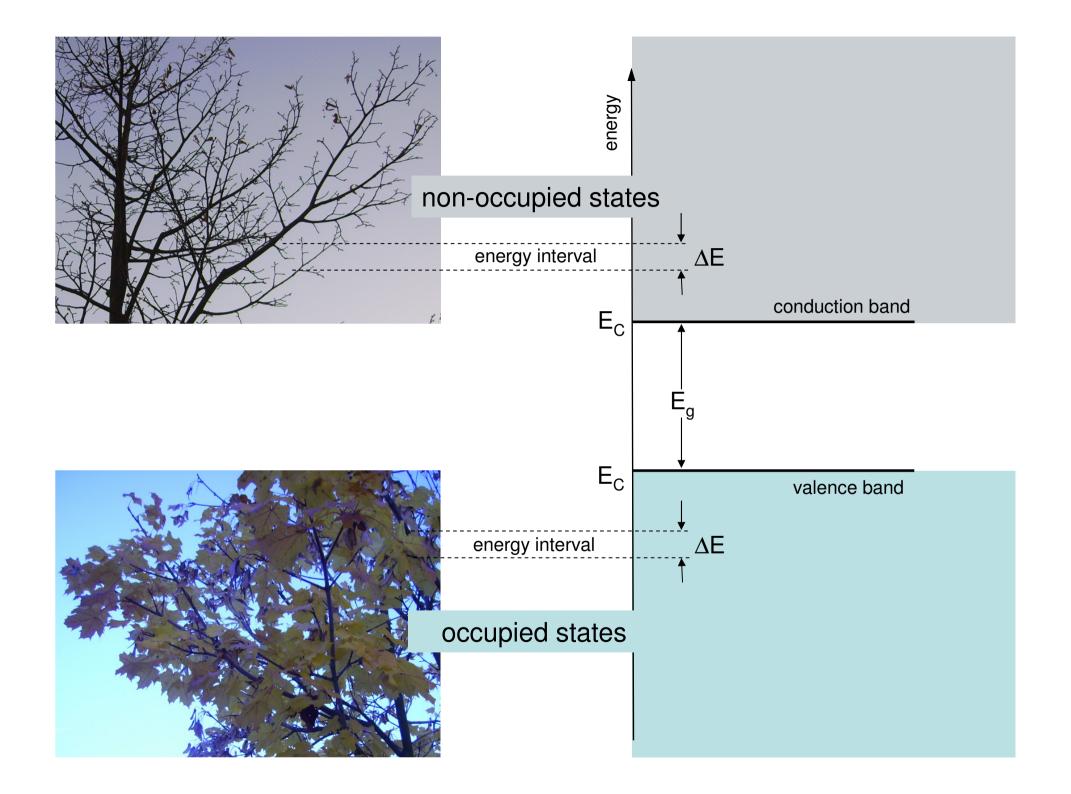
Photovoltaik 3

Electrons and Holes in Semiconductors

Resources:

Peter Würfel, Physik der Solarzellen Jenny Nelson, The Physics of Solar Cells Thomas Dittrich, lecture notes

- 1. Free electron and hole densities
- 2. Intrinsic carrier concentration
- 3. Doping of semiconductors
- 4. Equilibrium and excess charge carriers



Density of free electrons and holes

$$dn, dp \propto dE$$

$$dn \propto D_e(E)$$

$$dp \propto D_h(E)$$

$$dn \propto f_{e}(E) = f(E)$$

$$dp \propto f_h(E) = 1 - f(E)$$

E energy

dE energy interval

D_{e,h} density of electron states

f occupation probability for an electron

E_A width of the conduction and valence bands

$$dn = D_e(E) \cdot f(E) \cdot dE$$

$$n = \int_{E_C}^{E_C + E_A} D_e(E) \cdot f(E) \cdot dE$$

$$dp = D_h(E) \cdot [1 - f(E)] \cdot dE$$

$$p = \int_{E_V - E_A}^{E_V} D_h(E) \cdot [1 - f(E)] \cdot dE$$

Density of states

number of states per volume and energy interval

$$D(E) \equiv \frac{1}{V} \cdot \frac{dN(E)}{dE}$$

Delocalization

Free charge carriers do not belong to a chemical bond. Free charge carriers in an ideal semiconductor are delocalized. One free charge carrier is delocalized over the whole volume.

 Δx – volume of one delocalized state One delocalized state occupies the whole volume.

Delocalization and Heisenberg uncertainty principle

Heisenberg uncertainty principle Δp momentum of an electron in a state $h = 6.626 \ 10^{-34} \ Js$

$$\Delta x \cdot \Delta p = h$$

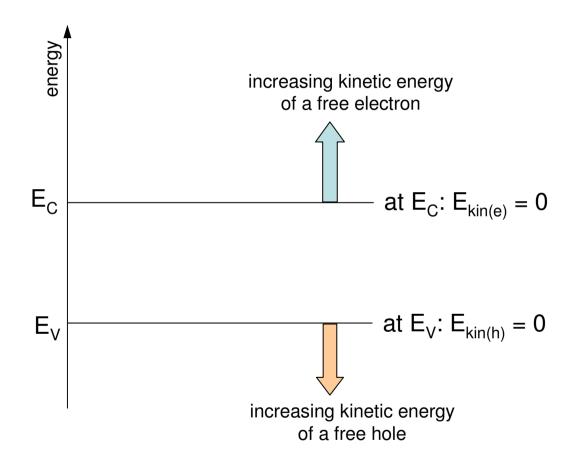
phase space volume per state

$$(\Delta x)^3 \cdot (\Delta p)^3 = h^3$$

volume in momentum space which can be occupied by one state

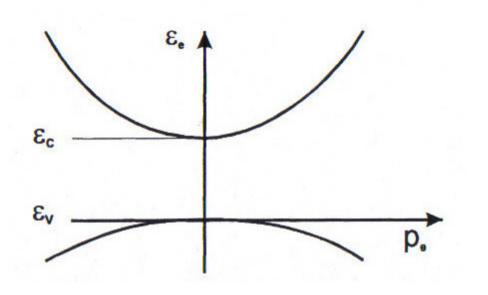
$$(\Delta p)^3 = \frac{h^3}{V}$$

Kinetic energy of free electrons and holes



$$E_{kin} = \frac{p^2}{2 \cdot m}$$

Effective mass



$$\frac{1}{m_e^*} = \frac{\partial^2 \mathcal{E}_e}{\partial p_e^2}$$

non-degenerated sta

Degeneration of states



states in a cupboard: one place can be occupied by more than one cup or glass

degeneration: one state can be occupied by more than one particle

twofold degeneration of electron states due to spinup and spin-down

From the number of states as a function of momentum to the density of states as a function of energy

for states with $p' \le p$

$$N(|p|) \propto \frac{4\pi}{3} \cdot |p|^3$$
 $N(|p|) \propto 2$
 $N(|p|) \propto \frac{1}{(\Delta p)^3}$

volume of a sphere with radius |p| in momentum space

$$N(|p|) \propto 2$$

spin degeneration

$$N(|p|) \propto \frac{1}{(\Delta p)^3}$$

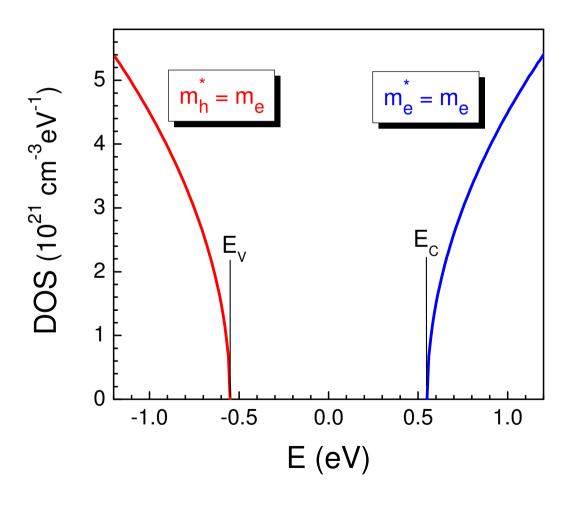
inverse volume of one state in momentum space

$$N(|p|) = \frac{8\pi}{3 \cdot h^3} \cdot V \cdot |p|^3 \quad \text{substitution:} \quad p_{(e)} = \sqrt{(E - E_C) \cdot 2 \cdot m_e^*} \quad N_e(E) = \frac{8\pi}{3 \cdot h^3} \cdot V \cdot \left(2 \cdot m_e^*\right)^{\frac{3}{2}} \cdot \left(E - E_C\right)^{\frac{3}{2}} \quad D_e(E) = \dots$$

$$D_e(E) = 4\pi \cdot \left(\frac{2 \cdot m_e^*}{h^2}\right)^{\frac{3}{2}} \cdot (E - E_C)^{\frac{1}{2}}$$

$$D_h(E) = 4\pi \cdot \left(\frac{2 \cdot m_h^*}{h^2}\right)^{\frac{3}{2}} \cdot (E_V - E)^{\frac{1}{2}}$$

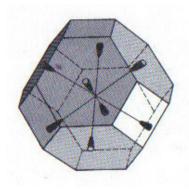
Order of DOS in conduction and valence bands



$\frac{m_e^*}{m_e}$	$\frac{m_h^*}{m_e}$
1.08	0.55
0.88	0.29
0.067	0.47
	1.08 0.88

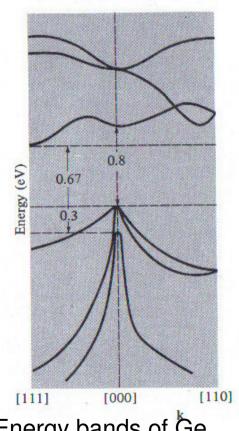
$$D(E) = \frac{6.7 \cdot 10^{21}}{cm^3 \cdot eV} \cdot \left(\frac{m_e^*}{m_e}\right)^{3/2} \cdot \left(E - E_C\right)^{1/2}$$

Band structure of Germanium



-Constant-energy surface near the conduction band minimum

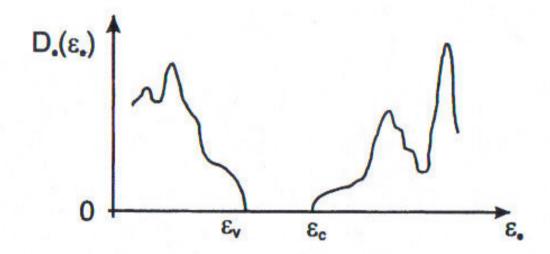
-Representation by four ellipsoids



Energy bands of Ge along [111]

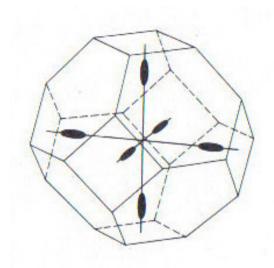
-Heavy and light holes-For large k deviations from parabolic approximation

Density of States of Germanium

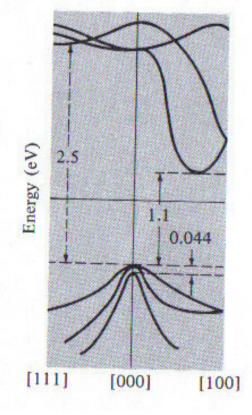


Zustandsdichte für Elektronen im Leitungs- und Valenzband des Halbleiters Germanium

Band structure of Silicon Indirect semiconductor



Constant energy surface near conduction band minimum



Energy bands in silicon

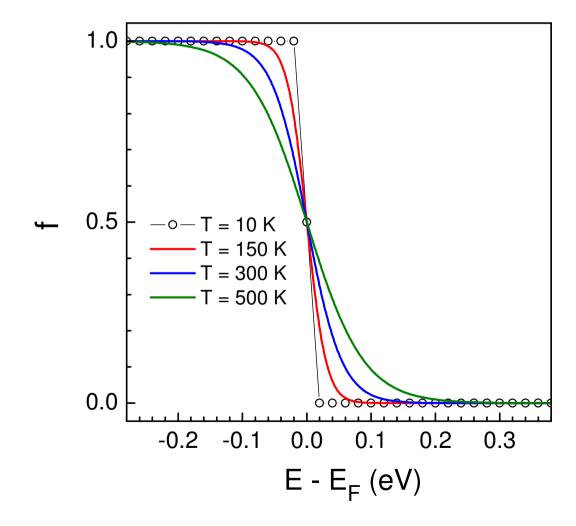
From Ashcroft Merwin, Solid state phyisics

Fermi-Dirac statistics

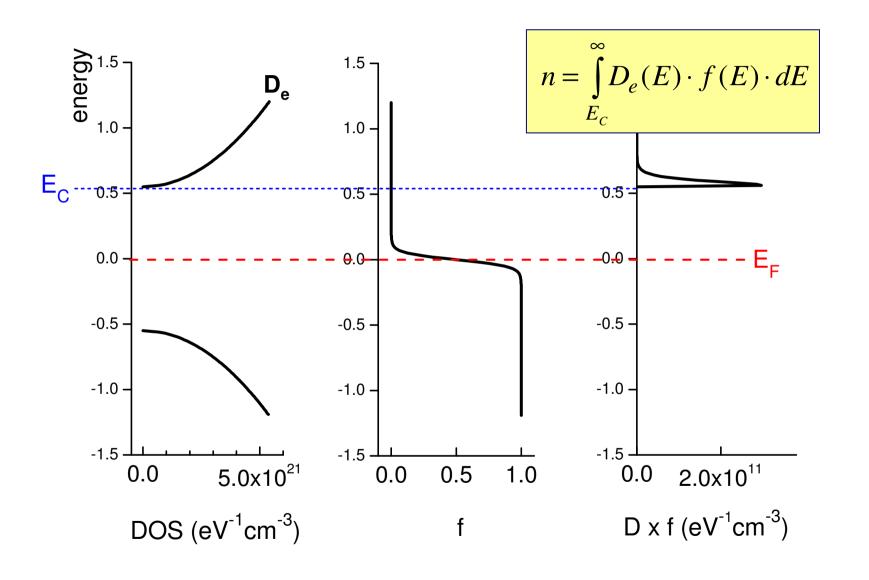
$$f(E) = \frac{1}{\exp\left(\frac{E - E_F}{k_B \cdot T}\right) + 1}$$

E_F – Fermi-energy

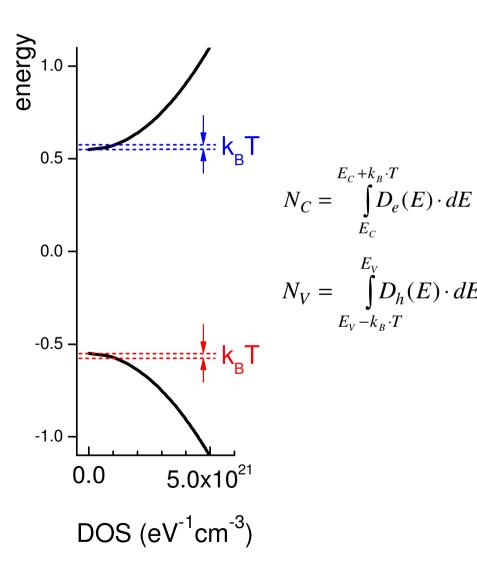
distribution function following from the nature of the electron



The product of $D_e(E)$ and f(E)



The effective DOS



$$N_{C(V)} = 2 \cdot \left(2\pi \cdot k_B \cdot T \cdot \frac{m_{e(h)}^*}{h^2} \right)^{\frac{3}{2}}$$

	$N_C(cm^{-3})$	$N_V(cm^{-3})$
Si	2.4·10 ¹⁹	1·10 ¹⁹
Ge	1·10 ¹⁹	6·10 ¹⁸
GaAs	5·10 ¹⁷	7·10 ¹⁸

Densities of free charge carriers

$$n = N_C \cdot \exp\left(-\frac{E_C - E_{Fn}}{k_B \cdot T}\right)$$

$$p = N_V \cdot \exp\left(-\frac{E_{Fp} - E_V}{k_B \cdot T}\right)$$

Boltzmann statistics

Effective density of states

$$N_{C} = 2 \cdot \left(2\pi \cdot k_{B} \cdot T \cdot \frac{m_{e}^{*}}{h^{2}}\right)^{3/2}$$

$$N_{C} = 2.5 \left(\frac{m_{e}^{*}}{m_{e}}\right)^{3/2} \left(\frac{T}{300K}\right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

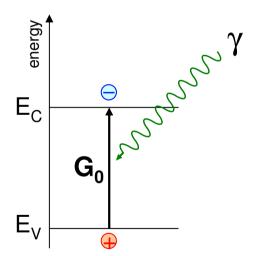
$$N_C = 2 \cdot \left(2\pi \cdot k_B \cdot T \cdot \frac{m_h^*}{h^2} \right)^{3/2}$$

$$N_V = 2.5 \left(\frac{m_h^*}{m_e} \right)^{3/2} \left(\frac{T}{300K} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

- 1. Free electron and hole densities
- 2. Intrinsic carrier concentration
- 3. Doping of semiconductors
- 4. Equilibrium and excess charge carriers

Re-absorption of black body irradiation

semiconductor emits black body irradiation semiconductor absorbs its own black body irradiation for $h\nu \geq E_\alpha$



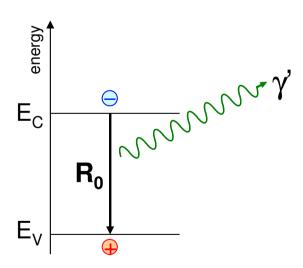
$$\gamma \rightarrow e^- + h^+$$

G₀ thermal generation rate of free charge carriers

Recombination of free charge carriers

free carrier concentrations can not increase infinitely

limitation by recombination



$$e^- + h^+ \rightarrow \gamma'$$

R₀ recombination rate

$$R_0 = B \cdot n_0 \cdot p_0$$

R₀ is proportional to n₀ and p₀ B recombination rate constant

Thermal equilibrium

$$G_0 = R_0$$

$$n_0 \cdot p_0 = \frac{G_0}{R} = const$$

$$n_0 \cdot p_0 = N_C \cdot N_V \cdot \exp\left(-\frac{E_C - E_{Fn} + E_{Fp} - E_V}{k_B \cdot T}\right)$$

$$n_0 \cdot p_0 = N_C \cdot N_V \cdot \exp\left(-\frac{E_g}{k_B \cdot T}\right) \cdot \exp\left(-\frac{E_{Fp} - E_{Fn}}{k_B \cdot T}\right)$$

 \boldsymbol{E}_{Fn} and \boldsymbol{E}_{Fp} can change with the free carrier concentration

$$\Longrightarrow E_{Fn} = E_{Fp}$$

Intrinsic carrier concentration

in thermal equilibrium
$$n_0 \cdot p_0 = const \equiv n_i^2$$

n_i intrinsic carrier concentration

$$n_i = \sqrt{n_0 \cdot p_0}$$

Intrinsic carrier concentration

in thermal equilibrium

$$n_i = \sqrt{n_0 \cdot p_0}$$

from Boltzmann statistics

$$n_0 = N_C \cdot \exp\left(-\frac{E_C - E_F}{k_B \cdot T}\right)$$

$$p_0 = N_V \cdot \exp\left(-\frac{E_F - E_V}{k_B \cdot T}\right)$$

Intrinsic carrier concentration

in thermal equilibrium

$$n_i = \sqrt{n_0 \cdot p_0}$$

Boltzmann statistics

$$n_0 = N_C \cdot \exp\left(-\frac{E_C - E_F}{k_B \cdot T}\right)$$
$$p_0 = N_V \cdot \exp\left(-\frac{E_F - E_V}{k_B \cdot T}\right)$$

$$n_i = \sqrt{N_V \cdot N_C} \cdot \exp\left(-\frac{E_g}{2 \cdot k_B \cdot T}\right)$$

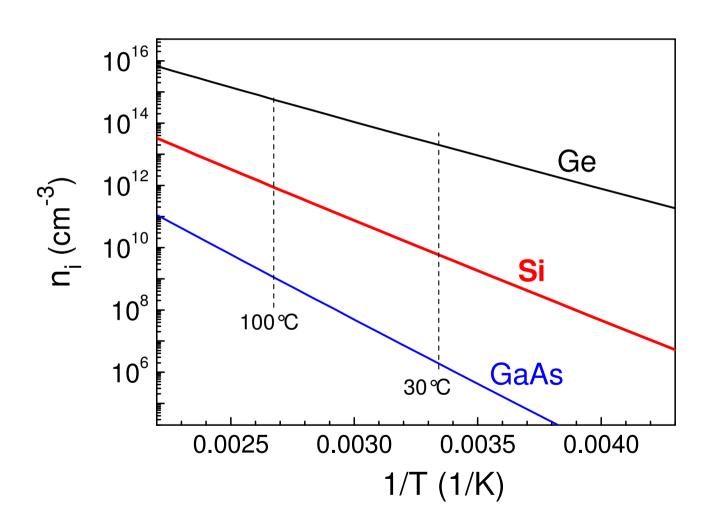
intrinsic semiconductor

$$n_i = n_0 = p_0$$

intrinsic Fermi-level

$$E_F = E_i = \frac{E_C + E_V}{2} + \frac{3}{4} \cdot k_B \cdot T \cdot \ln \frac{m_h^*}{m_e^*}$$

Temperature dependence of the intrinsic carrier concentration



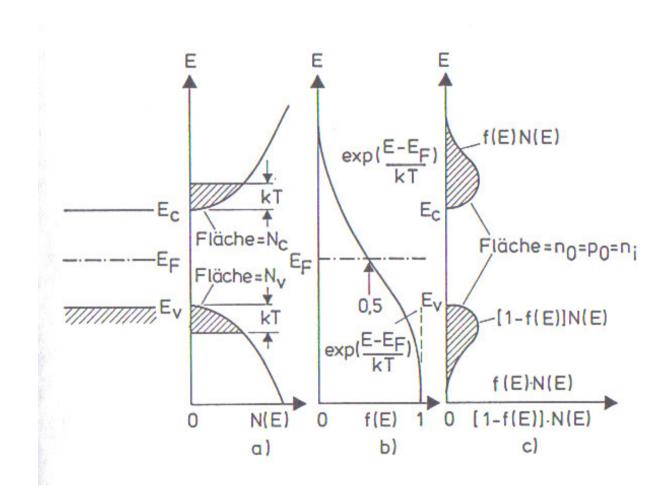
Intrinsic carrier concentrations at room temperature

$$n_i(Si) \approx 10^{10} \text{ cm}^{-3}$$

$$n_i(GaAs) \approx 10^6 \text{ cm}^{-3}$$

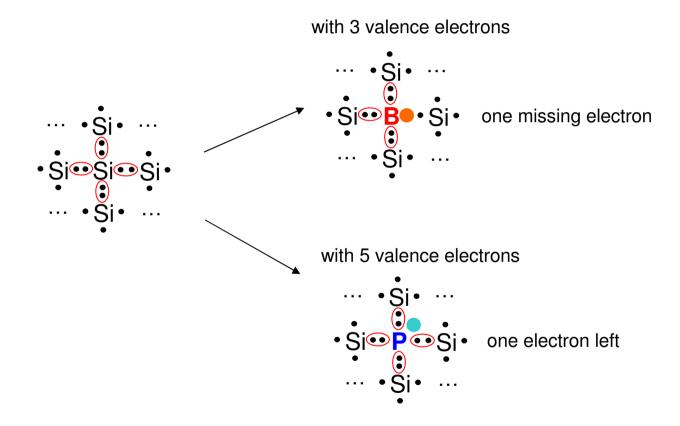
$$n_i(Ge) \approx 10^{13} \text{ cm}^{-3}$$

Intrinsic semiconductor



- 1. Free electron and hole densities
- 2. Intrinsic carrier concentration
- 3. Doping of semiconductors
- 4. Equilibrium and excess charge carriers

Impurity in a crystal lattice



Doping of semiconductors

Incorporation of impurity atoms into the crystal lattice of the semiconductor.

Impurity atoms have different valence in comparison to the atoms of the host lattice.

n-type doping

The impurity atom has more valence electrons than needed for bonding. Impurity atom giving an electron is named donor.

Un-bonded electron can be into the conduction band.

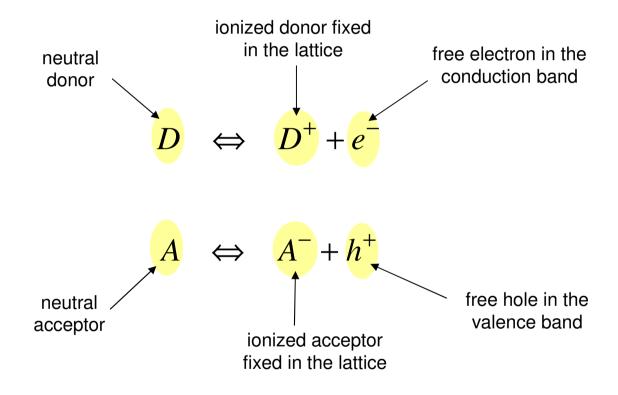
creation of a mobile electron in the conduction band

p-type doping

The impurity atom has less valence electrons than needed for bonding. Impurity atom taking an electron is named acceptor. Electron needed for bonding can be taken from the valence band.

creation of a mobile hole in the valence band

Free charge carriers and fixed ionized impurity



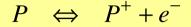
charge neutrality: n-type

p-type $N_A^- = p_0$

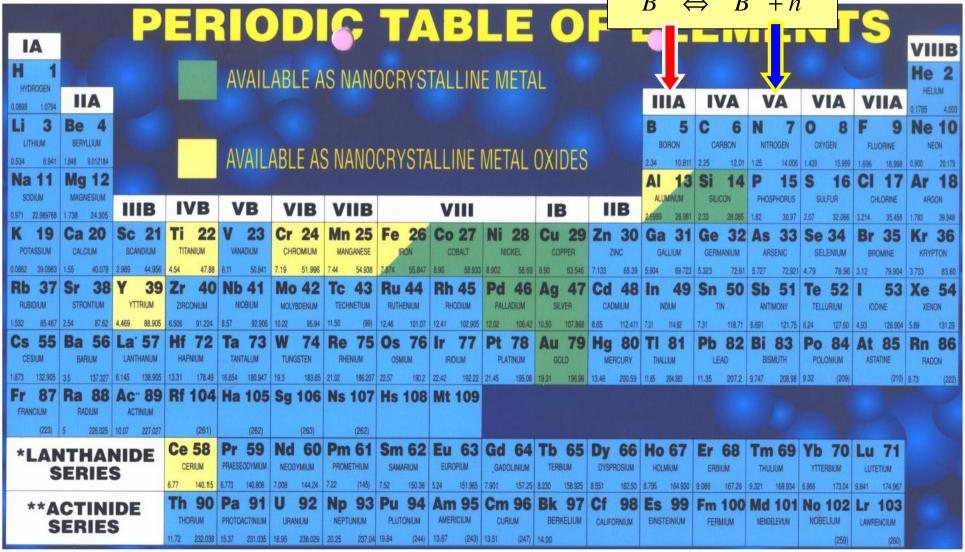
 $N_D^+ = n_0$

Doping of Si

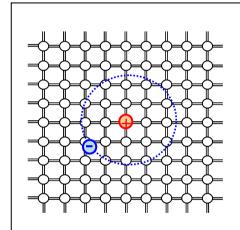
donors: P, As,... acceptors: B, Al,...



 $B \Leftrightarrow B^- + h^+$



Hydrogen model of doping



ionization energy

$$E_{ion} \propto \frac{m^*}{\varepsilon^2}$$

Bohr-radius

$$a_0 \propto \frac{\mathcal{E}}{m^*}$$

$$E_{ion}(H - atom) = 13.56 \, eV$$

 $a_0(H - atom) = 0.051 \, nm$

$$\varepsilon_{Si}$$
=11.9

estimation of the ionization or binding energy

$$E_{ion} = E_{ion}(H - atom) \cdot \frac{m_{e(Si,GaAs,...)}^*}{m_e} \cdot \frac{\varepsilon_{vac}^2}{\varepsilon_{Si,GaAs,...}^2}$$

$$E_{ion} = 6 \text{ meV (GaAs)} \dots \approx 50 \text{ meV (Si)}$$

all impurities are ionized at room temperature

$$N_D \approx N_D^+ = n_0$$

$$N_A \approx N_A^- = p_0$$

Energy levels of some impurities in Si

donors

	$E_C - E_D (eV)$
Sb	0.039
Р	0.044
As	0.049
Bi	0.069

acceptors

	$E_V + E_A (eV)$	
В	0.046	
Al	0.057	
Ga	0.065	
In	0.16	

Minority and majority charge carriers

majority charge carriers:

electrons in n-type hole in p-type

minority carriers:

holes in n-type electrons in p-type

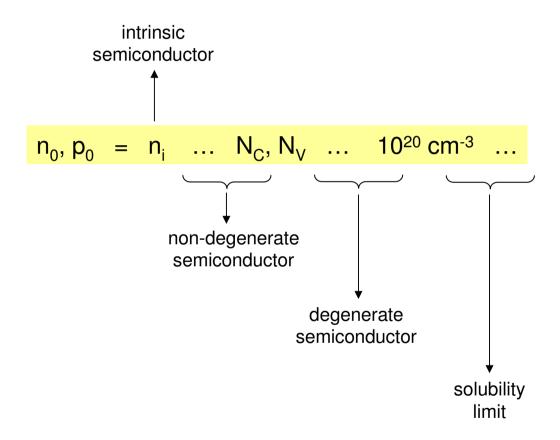
$$n_i^2 = n_0 \cdot p_0$$

Example: p-Si, $N_A = 10^{16} \text{ cm}^{-3}$

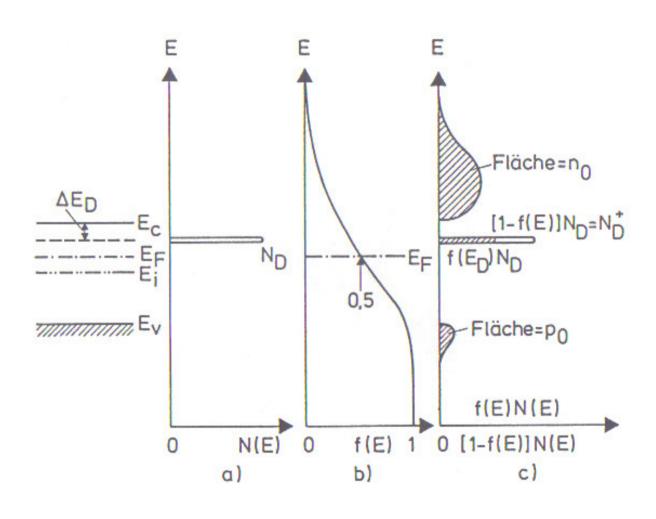
 $n_i(Si) \approx 10^{10} \text{ cm}^{-3}$

majority: $p_0 = 10^{16} \text{ cm}^{-3}$ minority: $n_0 = 10^4 \text{ cm}^{-3}$

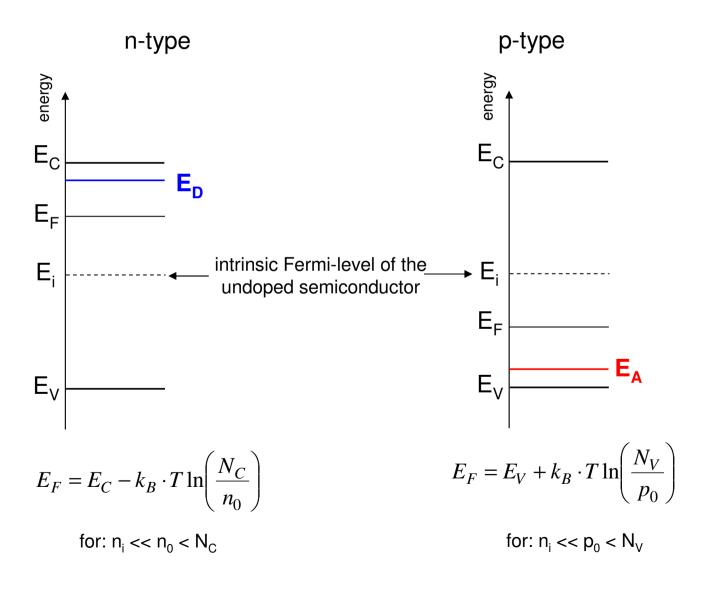
Doping range of semiconductors



Doped semiconductor



Energetic levels in doped semiconductors



*

Formulaes for the doped semiconductor

	n_e	n_h	ε_{F}
n-Leiter	$n_e \approx n_D$	$n_h = \frac{n_i^2}{n_e} = \frac{n_i^2}{n_D}$	$\varepsilon_C - kT \ln \frac{N_C}{n_D}$
p-Leiter	$n_e = \frac{n_i^2}{n_h} = \frac{n_i^2}{n_A}$	$n_h \approx n_A$	$\varepsilon_V + kT \ln \frac{N_V}{n_A}$

Doping dependence of the Fermi-level



- 1. Free electron and hole densities
- 2. Intrinsic carrier concentration
- 3. Doping of semiconductors
- 4. Equilibrium and excess charge carriers

Quasi-Fermi-levels under illumination

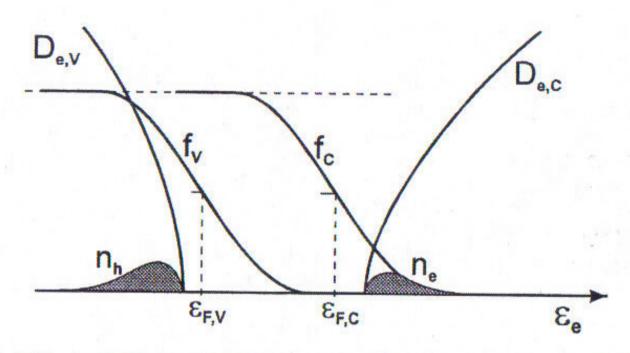


Abb. 3.12 Im belichteten Halbleiter wird die Besetzung von Leitungsband C und Valenzband V von verschiedenen Fermi-Verteilungen f_C und f_V geregelt.

thermal equilibrium

$$E_F = E_{Fo} = E_{Fn} = E_{Fp}$$

$$n_i^2 = n_0 \cdot p_0$$

$$E_{Fo} = E_C - k_B \cdot T \cdot \ln \left(\frac{N_C}{n_0} \right)$$
$$= E_V + k_B \cdot T \cdot \ln \left(\frac{N_V}{p_0} \right)$$

under illumination (or non-equilibrium)

$$E_{Fn} \neq E_{Fp}$$

$$n = n_0 + \Delta n$$

$$p = p_0 + \Delta p$$

$$n_0 \cdot p_0 > n_i^2$$
 equilibrium charge carriers
$$excess charge carriers$$

$$E_{Fn} = E_C - k_B \cdot T \cdot \ln \left(\frac{N_C}{n_0 + \Delta n} \right)$$

$$E_{Fp} = E_V + k_B \cdot T \cdot \ln \left(\frac{N_V}{p_0 + \Delta p} \right)$$

separation into quasi Fermi-levels in non-equilibrium

Ideal charge-selective contact

$$q \cdot V_{OC} = E_{Fn} - E_{Fp}$$

no losses of potential energy at contacts

$$\begin{split} E_{Fn} - E_{Fp} &= E_C - E_V - k_B \cdot T \cdot \ln \left(\frac{N_C}{n_0 + \Delta n} \cdot \frac{N_V}{p_0 + \Delta p} \right) \\ &= k_B \cdot T \cdot \ln \left(\frac{N_C \cdot N_V}{n_0 \cdot p_0} \right) - k_B \cdot T \cdot \ln \left(\frac{N_C}{n_0 + \Delta n} \cdot \frac{N_V}{p_0 + \Delta p} \right) \\ &= k_B \cdot T \cdot \ln \left(\frac{n_0 + \Delta n}{n_0} \cdot \frac{p_0 + \Delta p}{p_0} \right) \end{split}$$

example: p-type Si Origin of V_{OC} $n_0 + \Delta n \approx \Delta n$ $p_0 + \Delta p \approx p_0$ $V_{OC} = \frac{k_B \cdot T}{q} \cdot \ln \left(\frac{n_0 + \Delta n}{n_0} \cdot \frac{p_0 + \Delta p}{p_0} \right)$

Example: p-Si under illumination

typical doping range of the base: $p_0 = 10^{16} \text{ cm}^{-3}$ $n_0 = 10^4 \text{ cm}^{-3}$

typical concentration of photo generated charge carriers

$$\Delta n = \Delta p = 10^{15} \text{ cm}^{-3}$$

$$E_{F0} = E_V + 0.179 \, eV$$

$$E_{Fn} = E_C - 0.26 \ eV = E_g + E_V - 0.26 \ eV = E_V + 0.857 \ eV$$

$$E_{Fp} = E_V + 0.177 \ eV$$

$$E_{F0} - E_{Fp} = 0.002 \ eV$$

$$E_{Fn} - E_{F0} = 0.680 \, eV$$

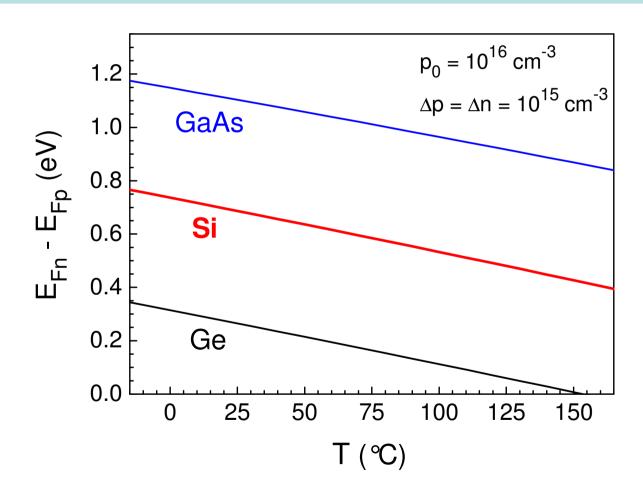
$$E_{Fn} - E_{Fp} = 0.678 \, eV$$

$$E_{F0} - E_{Fp} << E_{Fn} - E_{F0}$$

Temperature dependent separation of quasi Fermi-levels

$$n_i^2 = N_V \cdot N_C \cdot \exp\left(-\frac{E_g}{kT}\right)$$

$$E_{Fn} - E_{Fp} = kT \cdot \ln\left(\frac{(n_0 + \Delta n) \cdot (p_0 + \Delta p)}{n_i^2}\right)$$



Strong temperature dependence of n_i is the reason for the decrease of V_{OC} with increasing temperature.