Swiss Nanoscience Institute Basel

Dye Sensitized Solar Cells (27027-01)

(Dienstag, 8:00-10:00 Departement Physik, Seminarzimmer 3.12)

Übersicht der Vorlesung

S N swiss	Über	sicht der Vorlesung
NANOS INSTITU	22.02.2011	allg. Einführung in die Solarenergie
	01.03.2011	Physikalische Grundlagen der Photovoltaik I
	08.03.2011	Physikalische Grundlagen der Photovoltaik II
	15.03.2011	(Fastnachtsferien)
	22.03.2011	Photochemische und photoelektrische Methoden der Energiewandlung
	29.03.2011	Aufbau der Farbstoffsolarzelle, vgl. org. Solarzelle
	05.04.2011	TiO ₂ Nanopartikel als Substrat der Frabstoffsolarzelle
	12.04.2011	Geeignete molekulare Farbstoffe zur Sensibilisierung
	19.04.2011	Funktionsweise und Alternativen für den Elektrolyten
	26.04.2011	(Osterferien)
	03.05.2011	(FANAS meeting)
	10.05.2011	Experimentelle Methoden zur Solarzellen-Charakterisierung
	17.05.2011	Experimentelle Methoden zur Solarzellen-Charakterisierung
	24.05.2011	Bau und Charakterisierung eigener Solarzellen
	31.05.2011	

Geeignete molekulare Farbstoffe zur Sensibilisierung

Molecular Engineering of Sensitizers for DSSC

- Ruthenium sensitizers
 - Effect of protons
 - Effect of cations
 - Device stability
 - Effect of alkayl chains
 - Molar extinction coefficient
- Organic sensitizers
 - Courmarine
 - Indoline
 - Carotenoides & Anthocyanins
 - SPV measurements

Seminars

Michael Liebetanz

Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells

Chia-Yuan Chen,[†] Mingkui Wang,[‡] Jheng-Ying Li,[†] Nuttapol Pootrakulchote,[‡] Leila Alibabaei,[‡] Cevey-ha Ngoc-le,[‡] Jean-David Decoppet,[‡] Jia-Hung Tsai,[†] Carole Grätzel,[‡] Chun-Guey Wu,^{†,*} Shaik M. Zakeeruddin,^{‡,*} and Michael Grätzel^{‡,*}

[†]Department of Chemistry, National Central University, Jhong-Li, 32001 Taiwan, ROC, and [‡]Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH 1015 Lausanne, Switzerland

Heidi Potts

ChemComm

An element of surprise—efficient copper-functionalized dye-sensitized solar cells⁺

Takeru Bessho,^a Edwin C. Constable,^{*b} Michael Graetzel,^a Ana Hernandez Redondo,^b Catherine E. Housecroft,^b William Kylberg,^b Md. K. Nazeeruddin,^a Markus Neuburger^b and Silvia Schaffner^b

Received (in Cambridge, UK) 20th May 2008, Accepted 24th June 2008 First published as an Advance Article on the web 8th July 2008 DOI: 10.1039/b808491b

RSCPublishing

Ruthenium Sensitizers

The dye is one of the key components of DSSCs, **harvesting the solar radiation** and converting it into electric current

- Sensitizer should be **panchromatic** (<920nm)
- Directionality of excited state
- Interlocking groups for grafting the dye on TiO₂

Most prominent: ruthenium complexes endowed by thiocyanate ligands

$$S=C=N^{\ominus} \longleftrightarrow S-C\equiv N$$

Resonance structures of SCN⁻ delocalized electrons

Why ruthenium?

- Octahedral geometry (usage of specific ligands!)
- Tunable properties of the complexes
- Stable and accessible oxidation states

Swiss Nanoscience Institute Basel

Protonating Ligands

Carboxylic acid (R-COOH)

Dihydroxy R-(OH)₂

Phosphorous acid (H₃PO₃)

Influence of Protonation

TBA: Tetrabutylammonium $(C_4H_9)_4N$

 $\phi_{M} \qquad \begin{array}{c} e\Delta_{gap} \\ -Q_{SC} \\ \chi_{S} \\ - \\ \delta_{gap} \\ + \\ \delta_{gap} \\ - \\ \varepsilon_{CBM}(\vec{r}) \\ eV_{N} \end{array}$

- Proton transfer from dye to TiO₂
- Development of a positive surface charge
- Electric field (surface dipole) enhances adsorption and current and assists electron injection from excited state
- Conduction band edge TiO₂ is shifted -> lower V_{oc}
- -> optimal degree of protonation

Influence of Protonation

Table 3.2 Photovoltaic performances based on different degrees of protons in sensitizers.

Sensitizer	No. of protons	$J_{\rm sc}~({\rm mA/cm^2})$	$V_{\rm oc}~({ m mV})$	Fill factor	Efficiency at AM 1.5
Complex (1)	4	19 ± 0.5	600 ± 30	0.65 ± 0.05	7.4
Complex (2)	2	17 ± 0.5	730 ± 30	0.68 ± 0.05	8.4
Complex [TBA] (1)3	1	16.8 ± 0.5	770 ± 30	0.72 ± 0.05	9.3
Complex (3)	0	13 ± 0.5	900 ± 30	0.7 ± 0.05	8.2

Cation Substitution

- Substitution of the TBA cations by Na
- Complex (4) shows highest ISC at all intensities
- Strong dependence on the used electrolyte (E1/E2)

Device stability

Light soaking: 50°C for 1000h

Swiss Nanoscience Institute Basel

Effect of Alkyl Chains

- Problem: water induced desorption
- Solution: hydrophopic ligands
- Also: suppression of recombination (5,6) (preventing triiodide from reaching the TiO₂
- Negative: retardation of regeneration reaction (4)

TO,

Effect of π -conjugated ligands

 C_6H_{19} plus incorporating π -conjugation bridge between the anchoring groups

- Increased molecular extinction coefficients
- Enhanced red response

Thiocyanato Ligands

- Tuning the spectral response
- Nearly panchromatic absorption
- With this complex an efficiency of 11.1% was achieved!
- But SCN is still the weakest part of the complex

Metal-free Organic Sensitizers

CN

0

(19)

COOH

Indoline

COOH

(18)

- Courmarine dyes reach efficiencies up to 7.7%
- Drastically increased
 molecular extinction coefficients
- Enhanced light harvesting properties due to acceptor CN group
- Indoline dyes reach efficiencies up to 9.03%
- Wide range of absorption (IPCE > 80%)

Structures of Carotenoids and Anthocyanins

Effect of Electrolytes on I-V Currves

Dr. Biljana Bozic-Weber Prof. Dr. Edwin C. Constable

CPD variations on TiO₂

Topography

_			
		109,3	nm
		90,0	
	_	80,0	
		70,0	
		60,0	
		50,0	
		40,0	
		30,0	
		20,0	
		9,4	

Contact Potential Difference

The nanoporous TiO_2 film deposited on FTO glass shows an inhomogeneous CPD

SWISS NANOSCIENCE INSTITUTE BASEL

Measurement of the Local Photoactivity

1,9

Under illumination (532nm) the CPD drops by 300mV. The process needs roughly 9s to establish an equilibrium. The value corresponds to the V_{oc} measured for the complete solar cell.

CPD Variations at Boundaries

Topography

Contact Potential Difference

Some boundaries between the sensitized TiO₂ particles showing an increased CPD value while others not.