Swiss Nanoscience Institute Basel

Dye Sensitized Solar Cells (27027-01)

(Dienstag, 8:00-10:00 Departement Physik, Seminarzimmer 3.12)

Übersicht der Vorlesung

	Über	sicht der Vorlesung
` NANOS INSTITU	22.02.2011	allg. Einführung in die Solarenergie
	01.03.2011	Physikalische Grundlagen der Photovoltaik I
	08.03.2011	Physikalische Grundlagen der Photovoltaik II
	15.03.2011	(Fastnachtsferien)
	22.03.2011	Photochemische und photoelektrische Methoden der Energiewandlung
	29.03.2011	Aufbau der Farbstoffsolarzelle, vgl. org. Solarzelle
	05.04.2011	TiO ₂ Nanopartikel als Substrat der Frabstoffsolarzelle
	12.04.2011	Geeignete molekulare Farbstoffe zur Sensibilisierung
	19.04.2011	Funktionsweise und Alternativen für den Elektrolyten
	26.04.2011	(Osterferien)
	03.05.2011	(FANAS meeting)
	10.05.2011	Solid-State Dye-Sensitized Solar Cells
	17.05.2011	Experimentelle Methoden zur Solarzellen-Charakterisierung
	24.05.2011	Bau und Charakterisierung eigener Solarzellen
	31.05.2011	

Experimentelle Methoden zur Solarzellen-Charakterisierung

Methods

- IV-Characteristic
- Quantum Efficiency
- Surface Photovoltage
- •

Solar Spectrum

Sadewasser, HZB

Solar Spectrum

There are deviations of the solar spectrum outside the earth's atmosphere compared to black-body radiation.

These are due to:

- variation in temperature
- effects of the solar atmosphere
- Fraunhofer absorption lines (due to various elements in the solar atmosphere)

Effect of the earth's atmosphere

intensity and spectral distribution of the solar spectrum at the earth's surface depend on:

- path length through the atmosphere
- composition of the atmosphere

The path length can be described by the zenit angle z, which depends on time of day, season, latitude and longitude.

define an equivalent relative air mass m_r:

outer space: AM0

for zenit angle z = 0: AM1

important is AM1.5 = average air mass during daylight hours

 \rightarrow value at which solar cell efficiencies are measured and compared.

Solar Radiation Spectrum

On the path through the atmosphere the light experiences:

- Rayleigh scattering (at small particles)
- electronic absorption bands, i.e. oxygen, nitrogen, ozone, ...
- molecular rotational and vibrational bands, i.e. H₂O, CO₂, ...
- refraction and turbulence, i.e. variations in index of refraction n with temperature and pressure (small effect)

Sadewasser, HZB

Solar simulation

intensity: 100 mW/cm²

use xenon arc lamp or tungsten iodine lamp and appropriate filters to adjust to the solar spectrum.

- Water filter to absorb high wavelengths radiation
- Corning I-62 filter as color compensation filter

Solar Simulator (HZB)

system with two lamps, a xenon arc lamp and a halogen lamp

Solar Simulator (HZB)

Sadewasser, HZB

Characteristics of a Solar Cell

IV-curve of a solar cell, standard diode model:

$$J_{dark}(V) = J_0(e^{qV/k_BT} - 1)$$

Current-Voltage characteristics under illumination:

$$J(V) = J_0(e^{qV/k_BT} - 1) - J_{Ph}$$

$$\Rightarrow \qquad V_{OC} = \frac{k_B T}{q} \ln(\frac{J_{Ph}}{J_0} + 1)$$

 k_{B} : Boltzmann constant, T: temperature, J_{Ph} : photo current, J_{0} : saturation current

1 diode model

Real solar cells have electrical losses, which can be modeled by a combination of serial and parallel resistors:

$$J(V) = J_0(e^{q\frac{V-R_SJ}{Ak_BT}} - 1) + \frac{V-R_SJ}{R_P} - J_{Ph}$$

R_s: serial resistance *R_p*: parallel resistance *A*: diode quality factor

Influence of the leakage currents

1: $R_s = 0 \Omega$, $R_P = ∞$ 2: $R_s = 0 \Omega$, $R_P = 50 \Omega$ 3: $R_s = 5 \Omega$, $R_P = ∞$

Non perfect values reducing the fill factor and therefore the power conversion efficiency

Quantum Efficiency (spectral response)

- Relation between collected charge carriers and the incident photon flux in a certain wavelength region
 - External spectral response (all photons) EQE
 - Internal spectral response (only absorbed photons) IQE

Other name....: Incident-photon-to-collected electron efficiency (IPCE)

IPCE

• Determination of injection efficiency and electron diffusion length (steady state conditions necessary)

$$IPCE(\lambda) = \frac{J_{sc}}{qI_0} \qquad (\text{EQE})$$

• The IPCE can also be expressed by the efficiency of three separate physical processes:

$$IPCE(\lambda) = \eta_{lh}(\lambda)\eta_{inj}(\lambda)\eta_{col}(\lambda)$$

 η_{lh} Light harvesting efficiency

 $\eta_{inj}~{\rm Electron~injection~efficiency~from~dye~to~TiO_{_2}}$

 η_{col} Electron collection efficiency

APCE

• Absorbed-photon-to-collected-electron efficiency

$$APCE(\lambda) = \frac{IPCE(\lambda)}{\eta_{lh}}$$

• Sate of the art: APCE~100%, IPCE~ 85%

TABLE 1: Measured ($j_{sc AM1,5}$) and Calculated ($j_{sc calc}$) Photocurrents for Two Cells ($d = 13.5 \mu m$) Prepared with and without the TiCl₄ Treatment under "Front" and "Back" Illumination (SE and EE side)^{*a*}

cell, illumination direction	$j_{(sc AM1.5)}$ [measd] (mA cm ⁻²)	$L_{\rm IPCE}$ (μ m)	$L_{\rm trans}$ (μ m)	η _{LH} [AM1.5]	$\eta_{ ext{inj}}$	$\eta_{ m col}$ [$L_{ m IPCE}$]	$\overline{\eta_{ ext{col}}}$ $[L_{ ext{trans}}]$	j _{sc calc} [L _{IPCE}] (mA cm ⁻²)	$j_{ m sc\ calc} \ [L_{ m trans}] \ ({ m mA\ cm^{-2}})$
no TiCl ₄ , SE	5.2	8.3	20	0.18	0.63	0.67	0.91	5.0	7.1
no TiCl ₄ , EE	3.8	8.3	20	0.16	0.63	0.49	0.85	3.4	5.9
with TiCl ₄ , SE	8.9	28	55	0.20	0.69	0.95	0.99	8.9	9.3
with TiCl ₄ , EE	7.8	28	55	0.18	0.69	0.91	0.98	7.7	8.3

^{*a*} The values of *L* used to calculate the photocurrent with eq 8 (or 9) were determined either by analysis of IPCE data (L_{IPCE}) or from transient perturbation measurements (L_{trans}). η_{LH} is the light harvesting efficiency weighted for the integrated photon flux of the AM1.5 spectrum ($\lambda < 4000 \text{ nm}$). η_{col} is the corresponding electron collection efficiency weighted over all incident wavelengths and is shown for both values of *L*. The photocurrent, j_{sc} calc, calculated using L_{IPCE} analysis agrees well with the photocurrent measured using the solar simulator, j_{sc} AM1.5.

P. R. F. Barnes et al., J. Phys. Chem. C 113, 1126, (2009).

Light-harvesting efficiency and optical properties

J. Halme et al., J. Phys. Chem. C 112, 5623, (2008).

Surface Photovoltage

The surface photovoltage (SPV) is defined as the illuminationinduced change in the surface potential.

This effect, observed at Si and Ge surfaces, was first reported in a short note by Brattain in 1947

Kelvin Probe

Determining relative changes in work functions is done by measuring the work function difference between two materials.

Courtsey Yoram Shapira

Surface Photovoltage -SPV

Courtsey Yoram Shapira

The Basic Kelvin Probe

$$i = (V_{CPD} + V_{DC}) \frac{dC}{dt}$$
 $V_{dc} = -V_{CPD}$ $i_{ac=0}$

Courtsey Yoram Shapira

Surface Photovoltage Spectroscopy (SPS)

Surface state depopulation Surface state population

Courtsey Yoram Shapira

SPV of Buried Interfaces

Surface photovoltage spectroscopy is sensitive to electric fields in buried layers as well as at the surface.

Commercialization, Industrial Applications

Intensity modulated photocurrent spectroscopy (IMPS)

 provides new insight into the dynamics of electron transport and collection in DSSCs

Principle of IMPS:

Modulation of the light, illuminating an electrochemical cell. The quotient of one electric magnitude (current or voltage) with the dynamic light intensity P^{*} leads to the IMPS spectrum H^{*}.

Principle of EIS: Modulation of the current I or the voltage U at an electrochemical cell C. The quotient of the dynamic magnitudes leads to the Impedance Z^{*} (or Admittance Y^{*}=1/Z^{*}).