Solutions of the Test Exam

Fall Semester 2019

1 Oscillation (10 points)

(a) The period (= duration of an oscillation) can be read from the graph:

$$
T=2.5 \mathrm{~s} \text { (1 point })
$$

(b) For the angular frequency, the following applies:

$$
\begin{aligned}
\omega & =\frac{2 \pi}{T}(\mathbf{1} \text { point }) \\
& =\frac{2 \pi}{2.5 \mathrm{~s}}=\frac{4 \pi}{5} \mathrm{~s}^{-1}=2.5 \mathrm{~s}^{-1}(\mathbf{1} \text { point })
\end{aligned}
$$

(c) The amplitude (= deflection of an oscillation) can be read from the graph:

$$
A=5 \mathrm{~cm} \text { (1 point) }
$$

(d) For the position as a function of time applies:

$$
\begin{aligned}
y(t) & =A \cdot \sin \left(\omega \cdot t+\varphi_{0}\right)(1 \text { point }) \\
& =5 \mathrm{~cm} \cdot \sin \left(\frac{4 \pi}{5} \mathrm{~s}^{-1} \cdot t+\pi\right) \\
& =-5 \mathrm{~cm} \cdot \sin \left(\frac{4 \pi}{5} \mathrm{~s}^{-1} \cdot t\right)(\mathbf{1} \text { point })
\end{aligned}
$$

(e) The velocity $v(t)$ is the temporal derivative of the position:

$$
\begin{aligned}
v(t) & =\frac{d y(t)}{d t}(0.5 \text { points }) \\
& =-4 \pi \frac{\mathrm{~cm}}{\mathrm{~s}} \cdot \cos \left(\frac{4 \pi}{5} \mathrm{~s}^{-1} \cdot t\right)(1.5 \text { points })
\end{aligned}
$$

(f) The maximum value of the velocity is the prefactor of $v(t)$, since

$$
\left|\cos _{\max }\right|=1 \text { (1 point) }
$$

Therefore:

$$
\left|v_{\max }\right|=4 \pi \frac{\mathrm{~cm}}{\mathrm{~s}}=12.6 \frac{\mathrm{~cm}}{\mathrm{~s}}(\mathbf{1} \text { point })
$$

2 Velocity (6 points)

(a) The total path of the car is composed of two sections:

1. the path which the car drives during the reaction time t_{r}
2. the path during breaking

Path 1 is a uniform motion:

$$
\begin{aligned}
v & =\frac{s}{t} \\
\Rightarrow s & =v t_{r} \quad(\mathbf{1} \text { point }) \\
& =30 \mathrm{~m} / \mathrm{s} \cdot 0.8 \mathrm{~s} \\
& =24 \mathrm{~m}
\end{aligned}
$$

The car is $90 \mathrm{~m}-24 \mathrm{~m}=66 \mathrm{~m}$ away from the truck. (1 point)

(total 2 points)

(b) Path 2 is a uniform accelerated motion:

$$
s=\frac{a}{2} t^{2} \quad(\mathbf{1} \text { point })
$$

The time till the car is standing still is:

$$
t=\frac{v}{a}
$$

put in the formula for s :

$$
\begin{aligned}
s & \left.=\frac{v^{2}}{2 a} \quad \text { (1 point }\right) \\
& =72.6 \mathrm{~m} \quad(\mathbf{1} \text { point })
\end{aligned}
$$

From this it follows that the total stopping distance is 96.6 m . Since the distance to the truck was just 90 m , the car does not manage to stop before reaching the truck.
(1 point)

(total 4 Points)

3 Gymnastics hoop (8 points)

(a) The kinetic energy is:

$$
\begin{aligned}
E_{\text {kin }} & =\frac{1}{2} m v^{2} \quad(1 \text { point }) \\
& =\frac{1}{2} \cdot 0.5 \mathrm{~kg} \cdot(6 \mathrm{~m} / \mathrm{s})^{2} \\
& =9 \mathrm{~J} \quad(1 \text { point })
\end{aligned}
$$

(total 2 points)
(b) The rotational energy of the hoop is:

$$
\begin{aligned}
E_{\mathrm{rot}} & =\frac{1}{2} J \omega^{2} \quad(1 \text { point }) \\
& =\frac{1}{2} \cdot m r^{2} \cdot\left(\frac{v}{r}\right)^{2} \\
& =\frac{1}{2} m v^{2} \quad(1 \text { point }) \\
& =\frac{1}{2} \cdot 0.5 \mathrm{~kg} \cdot(6 \mathrm{~m} / \mathrm{s})^{2} \\
& =9 \mathrm{~J} \quad(1 \text { point })
\end{aligned}
$$

(total 3 points)

(c) The total energy must be equated with the potential energy to get the height:

$$
\begin{aligned}
E_{\mathrm{tot}} & =m g h \\
h & =\frac{E_{\text {kin }}+E_{\text {rot }}}{m g} \quad(\mathbf{1} \text { point }) \\
h & =3.67 \mathrm{~m} \quad(\mathbf{1} \text { point })
\end{aligned}
$$

Then, the sine can be used to calculate the distance of the hoop:

$$
s=\frac{h}{\sin 10^{\circ}}=\frac{3.67 \mathrm{~m}}{\sin 10^{\circ}}=21.13 \mathrm{~m} \quad(\mathbf{1} \text { point })
$$

(total 3 points)

4 Mixed (8 points)

(a) (i) Since the density of fresh water is smaller, it must be $d_{\text {fresh }}>d_{\text {sea }}$ (1 point)
(ii) The ship with the cross-section area A enters $d_{\text {sea }}$ in the seawater. The mass of the ship is:

$$
m=\rho_{\text {sea }} \cdot A \cdot d_{\text {sea }} \quad(1 \text { point })
$$

with $\rho_{\text {sea }}$ the density of seawater. After unloading, the ship enters as deep in fresh water as before(with the load) in seawater. It has now the following mass:

$$
m-\Delta m=\rho_{\text {fresh }} \cdot A \cdot d_{\text {sea }} \quad(\mathbf{1} \text { point })
$$

From the first equation it follows

$$
A \cdot d_{s e a}=m / \rho_{s e a}
$$

inserted into the second equation, it follows:

$$
m-\Delta m=\frac{\rho_{S W} \cdot m}{\rho_{M W}} \quad(\mathbf{1} \text { point })
$$

Therefore:

$$
m=\frac{\Delta m}{1-\frac{\rho_{S W}}{\rho_{M W}}}=2.06 \cdot 10^{7} \mathrm{~kg} \quad(\mathbf{1} \text { point })
$$

(b) The gravitational force is:

$$
F_{G}=m g=49.05 \mathrm{~N} \quad(\mathbf{1} \text { point })
$$

The adjacent side of the red triangle in the figure corresponds to half of the gravitational force. From this it follows:

$$
\left.\begin{array}{rl}
\cos 85^{\circ} & =\frac{\frac{F_{G}}{2}}{F} \\
\Rightarrow F & =\frac{\frac{F_{G}}{2}}{\cos 85^{\circ}} \\
& (1 \text { point }) \\
& =281.4 \mathrm{~N}
\end{array} \text { (1 point) }\right) ~ \$
$$

5 Warming up water (4 points)

(a) The needed energy is:

$$
\begin{aligned}
\Delta E & \left.=\left(m_{\text {cup }} c_{\text {quartz }}+m_{\text {water }} c_{\text {water }}\right) \cdot \Delta T \quad \text { (1 point }\right) \\
& =\left(0.2 \mathrm{~kg} \cdot 710 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}+0.2 \mathrm{~kg} \cdot 4182 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}\right) \cdot 70 \mathrm{~K} \\
& =68.49 \mathrm{~kJ} \quad(\mathbf{1} \text { point })
\end{aligned}
$$

(b) The usable power of the microwave oven ($P=600 \mathrm{~W}$) can be specified depending on the heat energy and time:

$$
P=\frac{\Delta E}{\Delta t}=\frac{m c \Delta T}{\Delta t}
$$

Thus, the duration Δt is:

$$
\begin{aligned}
\Delta t & =\frac{\Delta E}{P} \quad(1 \text { point }) \\
& =\frac{\left(0.2 \mathrm{~kg} \cdot 710 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}+0.2 \mathrm{~kg} \cdot 4182 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}\right) \cdot 70 \mathrm{~K}}{600 \mathrm{~W}} \\
& =114.1 \mathrm{~s} \quad(1 \text { point })
\end{aligned}
$$

(total 4 points)
total score: 36 points

